Synthesis of a New Cobalt Complex with Catechol Dianion and Study of the Kinetics of its Redox-Activated Dissociation

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

A new redox-active cobalt(III) complex with a catechol dianion and two 4,4’-dimethoxy-2,2’-bipyridine ligands was synthesized. The reduction of the complex with ascorbic acid in an inert atmosphere was studied by NMR spectroscopy in situ. The reaction followed the first-order kinetics with respect to the starting complex, had a rate constant of 1.1 × 10−3 s−1, and was accompanied by the release of catechol, which served as a model drug.

Авторлар туралы

E. Khakina

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: khakina90@ineos.ac.ru
Moscow, Russia

I. Nikovskii

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Moscow, Russia

A. Danshina

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Moscow, Russia; Dolgoprudnyi, Moscow oblast, Russia

E. Antoshkina

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Moscow, Russia; Dolgoprudnyi, Moscow oblast, Russia

A. Rodionov

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Moscow, Russia

Yu. Nelyubina

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Moscow, Russia

Әдебиет тізімі

  1. Vaupel P., Schlenger K., Knoop C. et al. // Cancer Research. 1991. V. 51. P. 3316.
  2. Brown J.M., Wilson W.R. // Nature Reviews Cancer. 2004. V. 4. P. 437.
  3. Denny W.A. // Cancer Invest. 2004. V. 22. P. 604.
  4. Kratz F., Müller I.A., Ryppa C. et al. // ChemMed-Chem. 2008. V. 3. P. 20.
  5. Renfrew A.K. // Metallomics. 2014. V. 6. P. 1324.
  6. Hall M.D., Failes T.W., Yamamoto N. et al. // Dalton Trans. 2007. P. 3983.
  7. Palmeira-Mello M.V., Caballero A.B., Ribeiro J.M. et al. // J. Inorg. Biochem. 2020. V. 211. P. 111211.
  8. Tsitovich P.B., Spernyak J.A., Morrow J.R. // Angew. Chem. Int. Ed. 2013. V. 52. P. 13997.
  9. Teicher B.A., Abrams M.J., Rosbe K.W. et al. // Cancer Res. 1990. V. 50. P. 6971.
  10. Ware D.C., Denny W.A., Clark G.R. // Acta Crystallogr. C. 1997. V. 53. P. 1058.
  11. Failes T.W., Hambley T.W. // Dalton Trans. 2006. V. 1895.
  12. Ahn G-One, Botting K.J., Patterson A.V. et al. // Biochem. Pharmacol. 2006. V. 71. P. 1683.
  13. Chang J.Y-C., Stevenson R.J., Lu G.-L. et al. // Dalton Trans. 2010. V. 39. P. 11535.
  14. Karnthaler-Benbakka C., Groza D., Kryeziu K. et al. // Angew. Chem. Int. Ed. 2014. V. 53. P. 12930.
  15. McPherson J.N., Hogue R.W., Akogun F.S. et al. // Inorg. Chem. 2019. V. 58. P. 2218.
  16. Хакина Е.А., Никовский И.А., Бабакина Д.А. и др. // Коорд. химия. 2023. Т. 49. С. 27
  17. Khakina E.A., Nikovskii I.A., Babakina D.A. et al. // Russ. J Coord Chem 2023. V. 49, № 1. P. 24. https://doi.org/10.1134/S1070328422700105.
  18. Nikovskii I.A., Spiridonov K.A., Dan’shina А.А. et al. // Russ. J. Coord. Chem. 2024. V. 50. P. 195. https://doi.org/10.1134/S1070328423600699
  19. Spiridonov K.A., Nikovskii I.A., Antoshkina E.P. et al. // Russ. J. Coord. Chem. 2024. V. 50. P. 163. https://doi.org/10.1134/S1070328423600663
  20. Vlcek A.A. // Inorg. Chem. 1967. V. 6. P. 1425.
  21. Ma D.-L., Wu‘C., Cheng S.-S. et al. // Int. J. Mol. Sci. 2019. V. 20. P. 341.
  22. Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. P. 112.
  23. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.
  24. Stamatatos T.C., Bell A., Cooper P. et.al. // Inorg. Chem. Commun. 2005. V. 8. P. 533.
  25. Alvarez S. // Chem. Rev. 2015. V. 115 P. 13447.
  26. Reddy O.S., Subha M.C.S., Jithendra T. et al. // Int. J. App. Pharm. 2019. V. 11. P. 71.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Российская академия наук, 2025