Allelopathic properties of cyanobacteria (review)
- Authors: Polyak Y.M.1, Sukharevich V.I.1
-
Affiliations:
- St. Petersburg Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences
- Issue: Vol 18, No 3 (2025)
- Pages: 440–450
- Section: ФИТОПЛАНКТОН, ФИТОБЕНТОС, ФИТОПЕРИФИТОН
- URL: https://rjdentistry.com/0320-9652/article/view/686983
- DOI: https://doi.org/10.31857/S0320965225030055
- EDN: https://elibrary.ru/IXVANI
- ID: 686983
Cite item
Abstract
This review is devoted to cyanobacterial metabolites with allelopathic activity. The allelopathic properties of cyanobacteria have been studied relatively recently, and many aspects of this problem remain controversial. The chemical structure of allelochemicals produced by cyanobacteria is diverse (alkaloids, phenolic compounds, organic acids, cyclic peptides, fatty acids, etc.), and the spectrum of biological action is extremely wide and covers almost all aquatic inhabitants. Allelopathy is considered a strategy for regulating phytoplankton communities, helping to maintain species diversity in aquatic ecosystems. Cyanotoxins, including microcystins, exhibit high allelopathic activity towards aquatic organisms. In addition to the effect of cyanobacterial allelochemicals on phytoplankton, they exhibit antifungal, antibacterial, antiviral, antioxidant, anti-inflammatory and antitumor activity, which indicates their potential for application in agriculture and pharmacology. The ecological role of allelochemicals, the mechanisms of action, and the influence of environmental factors are discussed.
Full Text

About the authors
Yu. M. Polyak
St. Petersburg Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences
Author for correspondence.
Email: yuliapolyak@mail.ru
Russian Federation, St. Petersburg
V. I. Sukharevich
St. Petersburg Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences
Email: yuliapolyak@mail.ru
Russian Federation, St. Petersburg
References
- Андреева Н.А., Мельников В.В., Снарская Д.Д. 2020. Роль цианобактерий в морских экосистемах // Биол. моря. T. 46. № 3. С. 16. https://doi.org/10.31857/S013434752003002X
- Гольдин Е.Б. 2013. Биологическая активность микроводорослей и ее значение в межвидовых взаимоотношениях // Экосистемы. № 9(28). C. 49.
- Кондратьев М., Карпова Г., Ларикова Ю. 2014. Взаимосвязи и взаимоотношения в растительных сообществах. М.: РГАУ–МСХА.
- Немцева Н.В., Мамедова Э.И., Немцева Е.К. 2019. Противоопухолевая активность некоторых метаболитов цианобактерий и перспективы их практического использования // Бюлл. Оренбург. науч. центра УрО РАН. № 2. С. 1. https://doi.org/10.24411/2304-9081-2019-12002
- Поляк Ю.М., Поляк М.С. 2022. Роль цианотоксинов в патологии человека и животных (обзор) // Журн. микробиол. эпидемиол. иммунобиол. Т. 99(2). С. 231. https://doi.org/10.36233/0372-9311-230
- Поляк Ю.М., Сухаревич В.И. 2017. Токсигенные цианобактерии: распространение, регуляция синтеза токсинов, способы их деструкции // Вода: химия и экология. № 11–12. С. 125.
- Поляк Ю.М., Сухаревич В.И. 2019. Аллелопатические взаимоотношения растений и микроорганизмов в почвенных экосистемах // Успехи соврем. биол. Т. 2. С. 147. https://doi.org/10.1134/S0042132419020066
- Поляк Ю.М., Сухаревич В.И., Поляк М.С. 2022. Цианобактерии и их метаболиты. СПб.: Нестор-История.
- Поляк Ю.М., Сухаревич В.И. 2023. Проблемы и перспективы использования цианобактерий (обзор) // Биология внутр. вод. № 1. С. 44. https://doi.org/10.31857/S032096522301014X
- Cухаревич В.И., Поляк Ю.М. 2020. Глобальное распространение цианобактерий: причины и последствия (обзор) // Биология внутр. вод. № 6. C. 562. https://doi.org/10.31857/S0320965220060170
- Уиттекер Р. 1980. Сообщества и экосистемы. М.: Мир.
- Babica P., Blaha L., Marsalek B. 2006. Exploring the natural role of microcystins – a review of effects on photoautotrophic organisms // J. Phycol. V. 42. P. 9. https://doi.org/10.1111/j.1529-8817.2006.00176.x
- Bacellar Mendes L.B., Vermelho A.B. 2013. Allelopathy as a potential strategy to improve microalgae cultivation // Biotechnol. Biofuels. V. 6(1). P. 152. https://doi.org/10.1186/1754-6834-6-152
- Becher P.G., Beuchat J., Gademann K., Jüttner F. 2005. Nostocarboline: Isolation and Synthesis of a New Cholinesterase Inhibitor from Nostoc 78-12A // J. Nat. Prod. V. 68. P. 1793. https://doi.org/10.1021/np050312l
- Berry J.P., Gantar M., Perez M.H. et al. 2008. Cyanobacterial toxins as allelochemicals with potential applications as algaecides, herbicides and insecticides // Mar. Drugs. V. 6(2). P. 117. https://doi.org/10.3390/md6020117
- Briand E., Bormans M., Gugger M. et al. 2016. Changes in secondary metabolic profiles of Microcystis aeruginosa strains in response to intraspecific interactions // Environ. Microbiol. V. 18(2). P. 384. https://doi.org/10.1111/1462-2920.12904
- Brilisauer K., Rapp J., Rath P. et al. 2019. Cyanobacterial antimetabolite 7-deoxy-sedoheptulose blocks the shikimate pathway to inhibit the growth of prototrophic organisms // Nat. Commun. V. 10. P. 545. https://doi.org/10.1038/s41467-019-08476-8
- Casanova L.M., Macrae A., de Souza J.E. et al. 2023. The potential of allelochemicals from microalgae for biopesticides // Plants. V. 12. P. 1896. https://doi.org/10.3390/plants12091896
- Chaïb S., Pistevos J.C.A., Bertrand C., Bonnard I. 2021. Allelopathy and allelochemicals from microalgae: An innovative source for bio-herbicidal compounds and biocontrol research // Algal Res. V. 54. P. 102213. https://doi.org/10.1016/j.algal.2021.102213
- Do Amaral S.C., Xavier L.P., Vasconcelos V., Santos A.V. 2023. Cyanobacteria: A promising source of antifungal metabolites // Mar. Drugs. V. 21. P. 359. https://doi.org/10.3390/md21060359
- Etchegaray A., Rabello E., Dieckmann R. et al. 2004. Algicide production by the filamentous cyanobacterium Fischerella sp. CENA 19 // J. Appl. Phycol. V. 16. P. 237. https://doi.org/10.1023/B:JAPH.0000048509.77816.5e
- Gonçalves A.L. 2021. The use of microalgae and cyanobacteria in the improvement of agricultural practices: A review on their biofertilising, biostimulating and biopesticide roles // Appl. Sci. V. 11. P. 871. https://doi.org/10.3390/app11020871
- Granéli E., Hansen P.J. 2006. Allelopathy in harmful algae: A mechanism to compete for resources? // Ecol. Harmful Algae. Berlin: Springer. V. 189. https://doi.org/10.1007/978-3-540-32210-8_15
- Griffiths D.J., Saker M.L. 2003. The Palm Island mystery disease 20 years on: a review of research on the cyanotoxin cylindrospermopsin // Environ. Toxicol. V. 18. P. 78. https://doi.org/10.1002/tox.10103
- Gromov B.V., Vepritskiy A.A., Titova N.N. et al. 1991. Production of the antibiotic cyanobacterin LU-1 by Nostoc linckia CALU 892 (cyanobacterium) // J. Appl. Phycol. V. 3. P. 55. https://doi.org/10.1007/BF00003919
- Gross E.M., Wolk C.P., Jüttner F. 1991. Fisherellin, a new allelochemical from the freshwater cyanobacterium Fisherella muscicola // J. Phycol. V. 27. P. 686. https://doi.org/10.1111/j.0022-3646.1991.00686.x
- Gross E.M. 2003. Allelopathy of aquatic autotrophs // Crit. Rev. Plant Sci. V. 22(3–4). P. 313. https://doi.org/10.1080/713610859
- Hillwig M.L., Zhu Q., Liu X. 2014. Biosynthesis of ambiguine indole alkaloids in cyanobacterium Fischerella ambigua // ACS Chem. Biol. V. 9. P. 372. https://doi.org/10.1021/cb400681n
- Hirata K., Yoshitomi S., Dwi S. et al. 2004. Generation of reactive oxygen species undergoing redox cycle of nostoc in A: a cytotoxic violet pigment produced by freshwater cyanobacterium Nostoc spongiaeforme // J. Biotechnol. V. 110. P. 29. https://doi.org/10.1016/j.jbiotec.2003.12.014
- Hu Z.Q., Liu Y.D., Li D.H. 2004. Physiological and biochemical analyses of Microcystin-RR toxicity to the cyanobacterium Synechococcus elongates // Environ. Toxicol. V. 19. P. 571. https://doi.org/10.1002/tox.20064
- Kaebernick M., Neilan B.A. 2001. Ecological and molecular investigations of cyanotoxin production // FEMS Microbiol. Ecol. V. 35. P. 1. https://doi.org/10.1111/j.1574-6941.2001.tb00782.x
- Keating K.I. 1977. Allelopathic influence on blue-green bloom sequence in a eutrophic lake // Science. V. 196(4292). P. 885. https://doi.org/10.1126/science.196.4292.885
- Konarzewska Z., Śliwińska-Wilczewska S., Felpeto A.B. et al. 2020. Assessment of the allelochemical activity and biochemical profile of different phenotypes of picocyanobacteria from the genus Synechococcus // Mar. Drugs. V. 18(4). P. 179. https://doi.org/10.3390/md18040179
- Inderjit. 1996. Plant phenolics in allelopathy // Bot. Rev. V. 62(2). P. 186.
- Latif S., Chiapusio G., Weston L.A. 2017. Chapter two – Allelopathy and the role of allelochemicals in plant defense // Adv. Bot. Res. V. 82. P. 19. https://doi.org/10.1016/bs.abr.2016.12.001
- Leão P.N., Vasconcelos M.T., Vasconcelos V.M. 2009. Allelopathy in freshwater cyanobacteria // Crit. Rev. Microbiol. V. 35(4). P. 271. https://doi.org/10.3109/10408410902823705
- Leão P.N., Pereira A.R., Liu W.T. et al. 2010 Synergistic allelochemicals from a freshwater cyanobacterium // Proc. Natl. Acad. Sci. USA. V. 107(25). P. 11183. https://doi.org/10.1073/pnas.091434310
- Leflaive J., Ten-Hage L. 2007. Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins // Freshwаter Biol. V. 52. P. 199. https://doi.org/10.1111/j.1365-2427.2006.01689.x
- Legrand C., Rengefors K., Fistarol G.O., Graneli E. 2003. Allelopathy in phytoplankton – biochemical, ecological and evolutionary aspects // Phycologia. V. 42(4). P. 406. https://doi.org/10.2216/i0031-8884-42-4-406.1
- Mason C.P., Edwards K.R., Carlson R.E. et al. 1982. Isolation of chlorine-containing antibiotic from the freshwater cyanobacterium Scytonema hofmanni // Science. V. 215. P. 400. https://doi.org/10.1126/science.6800032
- Molish H. 1937. Der Einfluss einer Pflanze auf die andere: Allelopathie. Jena: Fisher Verlag. (in German).
- Moreira C., Vasconcelos V., Antunes A. 2022. Cyanobacterial blooms: Current knowledge and new perspectives // Earth. V. 3. P. 127. https://doi.org/10.3390/earth3010010
- Nagle D.G., Paul V.J. 1999. Production of secondary metabolites by filamentous tropical marine cyanobacteria: ecological functions of the compounds // J. Phycol. V. 35(6). P. 1412. https://doi.org/10.1046/j.1529-8817.1999.3561412.x
- Omidi A., Esterhuizen-Londt M., Pflugmacher S. 2019. Interspecies interactions between Microcystis aeruginosa PCC 7806 and Desmodesmus subspicatus SAG 86.81 in a co-cultivation system at various growth phases // Environ. Int. V. 131. P. 105052. https://doi.org/10.1016/j.envint.2019.105052
- Pedrol N., González L., Reigosa M. 2006. Allelopathy and abiotic stress // Allelopathy. Dordrecht: Springer. https://doi.org/10.1007/1-4020-4280-9_9
- Pflugmacher S. 2002. Possible allelopathic effects of cyanotoxins, with reference to microcystin-LR, in aquatic ecosystems // Environ. Toxicol. V. 17. P. 407. https://doi.org/10.1002/tox.10071
- Ray S., Bagchi S.N. 2001. Nutrients and pH regulate algicide accumulation in cultures of the cyanobacterium Oscillatoria laetevirens // New Phytol. V. 149. P. 455. https://doi.org/10.1046/j.1469-8137.2001.00061.x
- Reigosa M.J., Sanchez-Moreiras A., Gonzales L. 1999. Ecophysiological approach in allelopathy // Critical Rev. Plant Sci. V. 18. P. 577. https://doi.org/10.1080/07352689991309405
- Rice E.L. 1974. Allelopathy. N.Y., London: Acad. Press.
- Righini H., Francioso O., Martel Quintana A., Roberti R. 2022. Cyanobacteria: a natural source for controlling agricultural plant diseases caused by fungi and oomycetes and improving plant growth // Horticulturae. V. 8. P. 58. https://doi.org/10.3390/horticulturae8010058
- Roy S. 2009. Do phytoplankton communities evolve through a self-regulatory abundance–diversity relationship? // BioSystems. V. 95. P. 160. https://doi.org/10.1016/j.biosystems.2008.10.001
- Rzymski P., Poniedziałek B., Kokociński M. et al. 2014. Interspecific allelopathy in cyanobacteria: Cylindrospermopsin and Cylindrospermopsis raciborskii effect on the growth and metabolism of Microcystis aeruginosa // Harmful Algae. V. 35. P. 1. https://doi.org/10.1016/j.hal.2014.03.002
- Sivonen K., Leikoski N., Fewer D.P., Jokela J. 2010. Cyanobactins – ribosomal cyclic peptides produced by cyanobacteria // Appl. Microbiol. Biotechnol. V. 86. P. 1213. https://doi.org/10.1007/s00253-010-2482-x
- Śliwińska-Wilczewska S., Wiśniewska K.A., Budzałek G., Konarzewska Z. 2021. Phenomenon of allelopathy in cyanobacteria // Ecophysiology and biochemistry of cyanobacteria. Singapore: Springer. https://doi.org/10.1007/978-981-16-4873-1_11
- Srivastava A., Jütmer F., Strasser R.J. 1998. Action of the ailelochemical, fischereilin A on photosystem II // Biochim. Biophys. Acta. V. 1364. P. 326. https://doi.org/10.1016/S0005-2728(98)00014-0
- Sukenik A., Eskhol R., Livne A. et al. 2002. Inhibition of growth and photosynthesis of the dinoflagellate Peridinium gatunense by Microcystis sp. (cyanobacteria): A novel Allelopathic mechanism // Limnol. Oceanogr. V. 47(6). P. 1656. https://doi.org/10.4319/lo.2002.47.6.1656
- Suikkanen S., Fistarol G.O., Granéli E. 2005. Effects of cyanobacterial allelochemicals on a natural plankton community // Mar. Ecol. Prog. Ser. V. 287. P. 1. https://doi.org/10.3354/meps287001
- Teneva I., Velikova V., Belkinova D. et al. 2023. Allelopathic potential of the cyanotoxins microcystin-LR and cylindrospermopsin on green algae // Plants. V. 12. P. 1403. https://doi.org/10.3390/plants12061403
- Tillmann U., Alpermann T., John U., Cembella A. 2008. Allelochemical interactions and short-term effects of the dinoflagellate Alexandrium on selected photoautotrophic and heterotrophic protists // Harmful Algae. V. 7. P. 52. https://doi.org/10.1016/j.hal.2007.05.009
- Valdor R., Aboal M. 2007. Effects of living cyanobacteria, cyanobacterial extracts and pure microcystins on growth and ultrastructure of microalgae and bacteria // Toxicon. V. 49. P. 769. https://doi.org/10.1016/j.toxicon.2006.11.025
- Vardi A., Schatz D., Beeri K. et al. 2002. Dinoflagellate-cyanobacterium communication may determine the composition of phytoplankton assemblage in a mesotrophic lake // Curr. Biol. V. 12. P. 1767. https://doi.org/10.1016/S0960-9822(02)01217-4
- Von Elert E., Jüttner F. 1996. Factors influencing the allelopathic activity of the planktonic cyanobacterium Trichormus doliolum // Phycologia. V. 35. P. 68. https://doi.org/10.2216/i0031-8884-35-6S-68.1
- Yang J., Deng X., Xian Q. et al. 2014. Allelopathic effect of Microcystis aeruginosa on Microcystis wesenbergii: microcystin-LR as a potential allelochemical // Hydrobiologia. V. 727. P. 65. https://doi.org/10.1007/s10750-013-1787-z
- Zak A.A., Kosakowska A. 2016. Cyanobacterial and microalgal bioactive compounds – the role of secondary metabolites in allelopathic interactions // Oceanol. Hydrobiol. Studies. V. 45. P. 131. https://doi.org/10.1515/ohs-2016-0013
- Zhang Y., Duy S.V., Munoz G., Sauvé S. 2022. Phytotoxic effects of microcystins, anatoxin-a and cylindrospermopsin to aquatic plants: a meta-analysis // Sci. Total Environ. V. 810. P. 152104. https://doi.org/10.1016/j.scitotenv.2021.152104
Supplementary files
