Modeling Coordinatively Unsaturated Structures in Mixed Mg-Al Oxides as Active Sites for Dehydrogenation and Dehydration of Ethanol

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Processes of dehydrogenation and dehydration of ethanol on a Lewis acid site (LAS) of mixed Mg–Al oxide have been studied by density-functional theory approach. The structure of the active site of the mixed oxide system has been proposed. Possible intermediates have been studied and the mechanisms of these processes occurring on LAS of mixed oxide containing aluminum or chromium have been suggested. Isomorphous substitution of aluminum for chromium in the structure of mixed oxide results in a decrease of the energetic barrier for the process of ethanol dehydrogenation.

Texto integral

Acesso é fechado

Sobre autores

М. Мikhailov

N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences

Email: lmk@ioc.ac.ru
Rússia, Moscow

L. Kustov

Lomonosov Moscow State University; N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: lmk@ioc.ac.ru
Rússia, Moscow; Moscow

Bibliografia

  1. Ndou A.S., Plint N., Coville N.J. // Appl. Catal. A: Gen. 2003. V. 251. P. 337.
  2. Kozlowski J.T., Davis R.J. // ACS Catal. 2013. V. 3. P. 1588.
  3. Choudary B.M., Kantam M.L., Neeraja V., Rao K.K., Figueras F., Delmotte L. // Green Chem. 2001. V. 3. P. 257.
  4. Cerveny J., Splıchalova J., Kacer P., Kovanda F., Kuzma M., Cerveny L. // J. Mol. Catal. A. 2008. V. 285. P. 150.
  5. Sharma S.K., Parikh P.A., Jasra R.V. // J. Mol. Catal. A. 2007. V. 278. P. 135.
  6. Cantrell D.G., Gillie L.J., Lee A.F., Wilson K. // Appl. Catal. A: Gen. 2005. V. 287. P. 183.
  7. Xie W., Liu Y., Chun H. // Catal. Lett. 2012. V. 142. P. 352.
  8. Abello S., Medina F., Tichit D., Perez-Ramírez J., Groen J.C., Sueiras J.E., Salagre P., Cesteros Y. // Chem. Eur. J. 2005. V. 11. P. 728.
  9. Maru M.S., Ram S., Shukla R.S. // Кинетика и катализ. 2023. T. 64. № 3. C. 305 (Maru M.S., Ram S., Shukla R.S. // Kinet. Catal. 2023. V. 63. № 3. P. 276.)
  10. Guerrero-Urbaneja P., Garcıa-Sancho C., Moreno-Tost R., Merida-Robles J., Santamarıa-Gonzalez J., Jimenez-Lopez A., Maireles-Torres P. // Appl. Catal. A: Gen. 2014. V. 470. P. 199.
  11. Бухтиярова М.В., Нуждин А.Л., Кардаш Т.Ю., Бухтияров А.В., Герасимов Е.Ю., Романенко А.В. // Кинетика и катализ. 2019. T. 60. № 3. С. 364. (Bukhtiyarova M.V., Nuzhdin A.L., Kardash N.Yu., Bukhtiyarov A.V., Gerasimov E.Yu., Romanenko A.V. // Kinet. Catal. 2019. V. 60. № 3. P. 343.)
  12. Liu P., Derchi M., Hensen E.J.M. // Appl. Catal. B: Environ. 2014. V. 144. P. 135.
  13. Guerrero-Urbaneja P., Garcıa-Sancho C., Moreno-Tost R., Merida-Robles J., Santamarıa-Gonzalez J., Jimenez-Lopez A., Maireles-Torres P. // Appl. Catal. A: Gen. 2014. V. 470. P. 199.
  14. Jimenez-Sanchidrian C., Ruiz J.R. // Appl. Catal. A: Gen. 2014. V. 469. P. 367.
  15. Navajas A., Campo I., Arzamendi G., Hernandez W.Y., Bobadilla L.F., Centeno M.A., Odriozola J.A., Gandia L.M. // Appl. Catal. B: Environ. 2010. V. 100. P. 299.
  16. Liu P., Derchi M., Hensen E.J.M. // Appl. Catal. A: Gen. 2013. V. 467. P. 124.
  17. Tichit D., Coq B. // CATTECH. 2003. V. 7. P. 206.
  18. Tichit D., Lutic D., Coq B., Durand R., Teissier R. // J. Catal. 2003. V. 219. P. 167.
  19. Tichit D., Gerardin C., Durand R., Coq B. // Top. Catal. 2006. V. 39. P. 89.
  20. Xu Z.P., Zhang J., Adebajo M.O., Zhang H., Zhou C.H. // Appl. Clay Sci. 2011. V. 53. P. 139.
  21. Millange F., Walton R.I., O’Hare D. // J. Mater. Chem. 2000. V. 10. P. 1713.
  22. Thomas G.S., Radha A.V., Kamath P.V., Kannan S. // J. Phys. Chem. B. 2006. V. 110. P. 12365.
  23. Sato T., Kato K., Endo T., Shimada M. // React. Solids. 1986. V. 2. P. 253.
  24. Бессуднов А.Э., Кустов Л.М., Мишин И.В., Михайлов М.Н. // Изв. АН. Сер. хим. 2017. V. 4. P. 666. (Bessudnov A.E., Kustov L.M., Mishin I.V., Mijhailov M.N. // Russ. Chem. Bull. 2017. V. 4. P. 666.)
  25. Knözinger G. // Angew. Chem. Int. Ed. Engl. 1968. V. 7. P. 791.
  26. Morterra C., Ghiotti G., Boccuzzi F., Coluccia S. // J. Catal. 1978. V. 51. P. 299.
  27. Feng G., Huo C.F., Deng C.M., Huang L., Li Y.W., Wang J., Jiao H.J. // Mol. Catal. A. 2009. V. 304. P. 58.
  28. Clayborne P.A., Nelson T.C., De Vore T.C. // Appl. Catal. A: Gen. 2004. V. 257. P. 225.
  29. Roy S., Mpourmpakis G., Hong D.-Y., Vlachos D.G., Bhan A., Gorte R.J. // ACS Catal. 2012. V. 2. P. 1846.
  30. Fang Z., Wang Y., Dixon D.A. // J. Phys. Chem. C 2015. V. 119. № 41. P. 23413.
  31. Becke A.D. // J. Chem. Phys. 1993. V. 98. P. 5648.
  32. Lee C., Yang W., Parr R.G. // Phys. Rev. B 1988. V. 37. P. 785.
  33. Vosko S.H., Wilk L., Nusair M. // Can. J. Phys. 1980. V. 58. P. 1200.
  34. Lee C., Yang W. // Phys. Rev. B. 1988. V. 45. P. 13244.
  35. Becke A.D. // J. Chem. Phys. 1993. V. 98. P. 1372.
  36. Stevens W.J., Krauss M., Basch H., Jasien P.G. // Can. J. Chem. 1992. V. 70. P. 612.
  37. Granovsky A.A. // Firefly version 8.2.0. http://classic.chem.msu.su/gran/firefly/index.html.
  38. Игнатов С.К., Багатурьянц А.А., Разуваев А.Г., Алфимов М.В., Мотовщикова М.В., Додонов В.А. // Изв. РАН. Сер. Хим. 1998. Т. 47. № 7. С. 1257. (Ignatov S.K., Bagatur’yants A.A., Razuvaev A.G., Alfimov M.V., Motovshchikova M.B., Dodonov V.A. // Russ. Chem. Bull. 1998. V. 47. № 7. P. 1257.)
  39. Bagaturyants A.A., Ignatov S.K., Razuvaev A.G., Gropen O. // Mater. Sci. Semiconductor Proc. 2000. V. 3. P. 71.
  40. Solans-Monfort X., Branchadell V., Sodupe M., Sierka M., Sauer J. // J. Chem. Phys. 2004. V. 121. P. 6034.
  41. Николаева Е.В., Мамонов Н.А., Кустов Л.М., Михайлов М.Н. // Изв. АН. Сер. хим. 2015. Т. 64. № 2. С. 269. (Nikolaeva E.V., Mamonov N.A., Kustov L.M., Mikhailov M.N. // Russ. Chem. Bull. 2015. V. 64. № 2. P. 269.)
  42. Bailly M., Chizallet C., Costentin G., Krafft J., Lauron-Pernot H., Che M. // J. Catal. 2005. V. 235. P. 413.
  43. Kozlowski J.T., Aronson M.T., Davis R. // Appl. Catal. B: Environ. 2010. V. 96. P. 508.
  44. Díez V.K., Apesteguía C.R., Di Cosimo J.I. // Catal. Today. 2000. V. 63. P. 53.
  45. Shinohara Y., Satozono H., Nakajima T., Suzuki S., Mishima S. // J. Chem. Software. 1998. V. 4. P. 41.
  46. Kozlowski J.T., Davis R.J. // ACS Catal. 2013. V. 3. P. 1588.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Selection of the mixed oxide cluster

Baixar (193KB)
3. Scheme 1. Scheme of ethanol dehydrogenation process on LCC with aluminium

Baixar (51KB)
4. Fig. 2. Mechanism of interaction of ethanol molecule with the active centre containing aluminium in the dehydrogenation reaction

Baixar (171KB)
5. Scheme 2. Main steps of ethanol dehydration process on acid-base centres including aluminium atom

Baixar (58KB)
6. Fig. 3. Mechanism of interaction of ethanol molecule with the active centre containing aluminium for the dehydration reaction

Baixar (190KB)
7. Scheme 3. Main steps of the ethanol dehydrogenation process on the acid-base centre containing chromium

Baixar (57KB)
8. Translation results Fig. 4. Mechanism of interaction of ethanol molecule with the active centre containing aluminium for the dehydrogenation reaction

Baixar (159KB)
9. Scheme 4. Main steps of the ethanol dehydration process on the acid-base centre containing chromium

Baixar (58KB)
10. Fig. 5. Mechanism of interaction of ethanol molecule with the active centre containing aluminium for the dehydration reaction

Baixar (172KB)
11. Fig. 6. Total energy variation for the ethanol dehydrogenation process on a mixed oxide cluster with aluminium and chromium

Baixar (121KB)
12. Fig. 7. Total energy variation for the ethanol dehydration process on a mixed oxide cluster with aluminium and chromium

Baixar (122KB)