Features of the formation of layers on the surface of valve metals in the process of ion beam assisted deposition of metals from vacuum arc discharge plasma

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Layers on the surface of aluminum, aluminum alloy, titanium and tantalum was formed by ion beam assisted deposition of metals. Formation of layers in ion beam assisted deposition mode, by means of the deposition of metal and mixing of precipitating layer with the substrate by accelerated (U = 20 kV) ions of the same metal from metal vapor and ionized plasma of vacuum (~10– 2 Pa) pulsed electric arc discharge, was carried out. Multicomponent amorphous layers containing atoms of the deposited metal, components of the substrate material, including oxygen of the surface oxide film, as well as hydrocarbon molecules as impurities were obtained. It is established that during ion beam assisted deposition of metals with getter properties (Zr, Cr, Er, Dy, etc.) on the surface of the studied materials, significant amounts of gases are captured from the residual atmosphere of the vacuum working chamber and are included in the composition of the formed layer. At the same time, the content of atoms of the substrate material in the layer is small. With ion beam assisted deposition of metals that do not exhibit getter properties, the content of impurities in the resulting layers is significantly less, their composition contains atoms of the deposited metal and the substrate material.

全文:

受限制的访问

作者简介

V. Poplavsky

Belarusian State Technological University

编辑信件的主要联系方式.
Email: vasily.poplav@tut.by
白俄罗斯, Minsk, 220006

A. Babrovich

Belarusian State Technological University

Email: vasily.poplav@tut.by
白俄罗斯, Minsk, 220006

A. Dorozhko

Belarusian State Technological University

Email: vasily.poplav@tut.by
白俄罗斯, Minsk, 220006

V. Matys

Belarusian State Technological University

Email: vasily.poplav@tut.by
白俄罗斯, Minsk, 220006

参考

  1. Electrochemical Dictionary & Encyclopedia. (2023) the Electrochemical Society, Inc. Cited December 2023. https://knowledge.electrochem.org/ed/dict.htm#V
  2. Tawfik H. Hydrogen, Methanol and Ethanol PEM Fuel Cell Development at IRTT. // Proc. Energy Long Island Conf. 2007. https://www.aertc.org/conferences/conference-2007/ index.php/tawfik.pdf
  3. Gago A.S., Ansar A.S., Gazdzicki P., Wagner N., Arnold J., Friedrich K.A. // ECS Trans. 2014. V. 64. Iss. 3. P. 1039. https://doi.org/10.1149/06403.1039ecst
  4. Liu J., Chen F., Chen Y., Zhang D. // J. Power Sources. 2009. V. 187. P. 500. https://doi.org/10.1016/j.jpowsour.2008.11.086
  5. Wang J.T., Wang C., Mao Z.Q. // Int. J. Hydrogen Energy. 2012. V. 37. P. 12069. https://doi.org/10.1016/j.ijhydene.2012.04.146
  6. Поплавский В.В., Дорожко А.В., Матыс В.Г., Смягликов И.П., Селифанов С.О. // Известия ВУЗов. Физика. 2015. T. 58. C. 126.
  7. Поплавский В.В., Дорожко А.В., Матыс В.Г., Смягликов И.П., Селифанов С.О. Формирование защитных слоев на поверхности токовых коллекторов из титана осаждением хрома из плазмы газового и вакуумного разрядов. // Матер. 11-й Междунар. конф. Взаимодействие излучений с твердым телом, Минск. 2015. С. 365.
  8. Poplavsky V.V., Dorozhko A.V., Matys V.G. Composition And Corrosion Properties Of Layers Formed On Aluminum Substrates By Ion Beam Assisted Metals Deposition From Vacuum Arc Discharge Plasma. // Тез. докл. 50-й междунар. Тулиновской конф. по физике взаимодействия заряженных частиц с кристаллами, Москва. 2021. С. 126.
  9. Поплавский В.В., Дорожко А.В., Матыс В.Г. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2016. № 9. С. 104. https://doi.org/10.7868/S0207352816050152
  10. Слинкин А.А. // Итоги науки и техники. Кинетика и катализ. 1982. Т. 10. С. 5.
  11. Komarov F.F., Poplavskij V.V. // Radiat. Effects. 1988. V. 106. P. 1. https://doi.org/10.1080/00337578808013724
  12. Wolf G.K. // J. Vac. Scie. Technol. A. 1992. V. 10. P. 1757. https://doi.org/10.1116/1.577743
  13. Gullá A.F., Saha M.S., Allen R.J., Mukerjee S. // Electrochem. Solid State Lett. 2005. V. 8. Iss. 10. P.A504. https://doi.org/10.1149/1.2008887
  14. Поплавский В.В., Мищенко Т.С., Матыс В.Г. // ЖТФ. 2010. Т. 80. С. 138. https://doi.org/10.1134/S1063784210020222
  15. Поплавский В.В., Мищенко Т.С., Матыс В.Г. // Персп. Материалы. 2009. № 6. С. 12.
  16. Поплавский В.В., Мищенко Т.С., Матыс В.Г. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2010. № 7. С. 33. https://doi.org/10.1134/S1027451010040051
  17. Поплавский В.В., Стельмах Т.С., Матыс В.Г. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2012. № 9. С. 45. https://doi.org/10.1134/S1027451012090121
  18. Поплавский В.В., Дорожко А.В., Матыс В.Г. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2019. № 12. С. 94. https://doi.org/10.1134/S102745101905032X
  19. Xue T., Attarilar S., Liu S., Liu J., Song X., Li L., Zhao B., Tang Y. // Front. Bioeng. Biotechnol. 2020. V. 8. P. 603072. https://doi.org/10.3389/fbioe.2020.603072
  20. Mani G., Porter D., Grove K., Collins S., Ornberg A., Shulfer R. // J. Biomed. Mater. Res. A. 2022. V. 110. P. 1291. https://doi.org/10.1002/jbm.a.37373
  21. Ge X., Li T., Yu M , Zhu H., Wang Q., Bi X., Xi T., Wu X., Gao Y. // Biomedical Engineering. 2022. V. 3. https://doi.org/10.1515/bmt-2022-021 1
  22. Liu J., Liu J., Attarilar S., Wang C., Tamaddon M., Yang C., Xie K., Yao J., Wang L., Liu C., Yujin Tang Y. // Front. Bioeng. Biotechnol. 2020. V. 8. P. 576969. https://doi.org/10.3389/fbioe.2020.576969
  23. Chen Z., Wang Z., Qiu W., Fang F. // Front. Bioconjugate Chem. 2021. V. 32. P. 627. https://doi.org/10.1021/acs.bioconjchem.1c00129
  24. Wan R., Chu S., Wang, X., Lei L., Tang H., Hu G., Dong L., Li D., Gu H. // J. Biomed. Mater. Res. B. 2020. V. 108. P. 3008. https://doi.org/10.1002/jbm.b.34630
  25. Li L., Li Q., Zhao M., Dong L., Wu J., Li D. // ACS Biomater. Sci. Eng. 2019. V. 5. P. 3303. https://doi.org/10.1021/acsbiomaterials.9b00248
  26. Hempel F., Finke B., Zietz C., Bader R., Weltmann K. D., Polak M. // Surf. Coat. Technol. 2014. V. 256. P. 52. https://doi.org/10.1016/j.surfcoat.2014.01.027
  27. Wang L., Luo Q., Zhang X., Qiu J., Qian S., Liu X. // Bioact Mater. 2021. V. 6. P. 64. https://doi.org/10.1016/j.bioactmat.2020.07.012
  28. Chao X., Cai D., Ji T., Li K., Qiao Y., Liu X. // ACS Biomater. Sci. Eng. 2018. V. 4. P. 3185. https://doi.org/10.1021/acsbiomaterials.8b00501
  29. Xin Y.C., Chu P.K. // Surface Engineering of Light Alloys. 2010. Р. 362. https://doi.org/10.1533/9781845699451.2.362
  30. Poplavsky V.V., Komarov F.F., Luhin V.G., Pil’ko V.V., Partyka J. // Acta Phys. Polon. A. 2015. V. 128. P. 946. https://doi.org/10.12693/APhysPolA.128.946
  31. Поплавский В.В., Дорожко А.В. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2013. № 4. С. 9. https://doi.org/10.1134/S1027451013020444

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Image of a section of the surface of a sample of titanium alloy VT1-0 with a surface layer obtained in the process of ion-assisted deposition of chromium.

下载 (16KB)
3. Fig. 2. Distribution of titanium, oxygen and chromium (a) along the scanning line (b) of the surface of a sample of VT1-0 alloy with a layer formed in the process of ion-assisted deposition of chromium (according to energy dispersive analysis data, excluding carbon).

下载 (60KB)
4. Fig. 3. Rutherford backscattering spectra of 4He ions on the nuclei of atoms of elements included in the layers formed on the surface of aluminum A7 (Zr/A7) and aluminum alloy D16T (Zr/D16T and Cr/D16T) in the process of ion-assisted deposition of zirconium and chromium. E0 = 1.3 MeV.

下载 (18KB)
5. Fig. 4. Rutherford backscattering spectra of 4He ions on the nuclei of atoms of elements included in the layers formed on the surface of samples of titanium alloy VT1-0 with layers obtained in the process of ion-assisted deposition of platinum (Pt/Ti) and chromium (Cr/Ti). E0 = 1.0 MeV.

下载 (17KB)
6. Fig. 5. A section of the Rutherford backscattering spectrum of 4He ions on the nuclei of titanium and chromium atoms included in the layer formed on the VT1-0 titanium alloy during ion-assisted deposition of chromium, in comparison with the spectrum obtained using modeling taking into account the presence of the following elements in the layer: Cr, Ti, O, C, H. E0 = 1.0 MeV.

下载 (18KB)
7. Fig. 6. Rutherford backscattering spectra of 4He ions on the nuclei of atoms of elements included in the layers formed on the tantalum surface during ion-assisted deposition of platinum (Pt/Ta), erbium and platinum (Er, Pt/Ta), dysprosium and platinum (Dy, Pt/Ta), holmium and platinum (Ho, Pt/Ta). E0 = 1.0 MeV.

下载 (20KB)
8. Fig. 7. Section of the model spectrum of Rutherford backscattering of 4He ions on nuclei of dysprosium, platinum and tantalum atoms, which are part of the layer formed on the surface of tantalum in the process of alternate ion-assisted deposition of dysprosium and platinum, obtained taking into account the presence of the following elements in the layer: Dy, Ta, Pt, O, C, H. E0 = 1.0 MeV.

下载 (16KB)

版权所有 © Russian Academy of Sciences, 2024