Features of the formation of layers on the surface of valve metals in the process of ion beam assisted deposition of metals from vacuum arc discharge plasma
- 作者: Poplavsky V.V.1, Babrovich A.G.1, Dorozhko A.V.1, Matys V.G.1
-
隶属关系:
- Belarusian State Technological University
- 期: 编号 9 (2024)
- 页面: 64-72
- 栏目: Articles
- URL: https://rjdentistry.com/1028-0960/article/view/664750
- DOI: https://doi.org/10.31857/S1028096024090085
- EDN: https://elibrary.ru/EHSMUN
- ID: 664750
如何引用文章
详细
Layers on the surface of aluminum, aluminum alloy, titanium and tantalum was formed by ion beam assisted deposition of metals. Formation of layers in ion beam assisted deposition mode, by means of the deposition of metal and mixing of precipitating layer with the substrate by accelerated (U = 20 kV) ions of the same metal from metal vapor and ionized plasma of vacuum (~10– 2 Pa) pulsed electric arc discharge, was carried out. Multicomponent amorphous layers containing atoms of the deposited metal, components of the substrate material, including oxygen of the surface oxide film, as well as hydrocarbon molecules as impurities were obtained. It is established that during ion beam assisted deposition of metals with getter properties (Zr, Cr, Er, Dy, etc.) on the surface of the studied materials, significant amounts of gases are captured from the residual atmosphere of the vacuum working chamber and are included in the composition of the formed layer. At the same time, the content of atoms of the substrate material in the layer is small. With ion beam assisted deposition of metals that do not exhibit getter properties, the content of impurities in the resulting layers is significantly less, their composition contains atoms of the deposited metal and the substrate material.
全文:

作者简介
V. Poplavsky
Belarusian State Technological University
编辑信件的主要联系方式.
Email: vasily.poplav@tut.by
白俄罗斯, Minsk, 220006
A. Babrovich
Belarusian State Technological University
Email: vasily.poplav@tut.by
白俄罗斯, Minsk, 220006
A. Dorozhko
Belarusian State Technological University
Email: vasily.poplav@tut.by
白俄罗斯, Minsk, 220006
V. Matys
Belarusian State Technological University
Email: vasily.poplav@tut.by
白俄罗斯, Minsk, 220006
参考
- Electrochemical Dictionary & Encyclopedia. (2023) the Electrochemical Society, Inc. Cited December 2023. https://knowledge.electrochem.org/ed/dict.htm#V
- Tawfik H. Hydrogen, Methanol and Ethanol PEM Fuel Cell Development at IRTT. // Proc. Energy Long Island Conf. 2007. https://www.aertc.org/conferences/conference-2007/ index.php/tawfik.pdf
- Gago A.S., Ansar A.S., Gazdzicki P., Wagner N., Arnold J., Friedrich K.A. // ECS Trans. 2014. V. 64. Iss. 3. P. 1039. https://doi.org/10.1149/06403.1039ecst
- Liu J., Chen F., Chen Y., Zhang D. // J. Power Sources. 2009. V. 187. P. 500. https://doi.org/10.1016/j.jpowsour.2008.11.086
- Wang J.T., Wang C., Mao Z.Q. // Int. J. Hydrogen Energy. 2012. V. 37. P. 12069. https://doi.org/10.1016/j.ijhydene.2012.04.146
- Поплавский В.В., Дорожко А.В., Матыс В.Г., Смягликов И.П., Селифанов С.О. // Известия ВУЗов. Физика. 2015. T. 58. C. 126.
- Поплавский В.В., Дорожко А.В., Матыс В.Г., Смягликов И.П., Селифанов С.О. Формирование защитных слоев на поверхности токовых коллекторов из титана осаждением хрома из плазмы газового и вакуумного разрядов. // Матер. 11-й Междунар. конф. Взаимодействие излучений с твердым телом, Минск. 2015. С. 365.
- Poplavsky V.V., Dorozhko A.V., Matys V.G. Composition And Corrosion Properties Of Layers Formed On Aluminum Substrates By Ion Beam Assisted Metals Deposition From Vacuum Arc Discharge Plasma. // Тез. докл. 50-й междунар. Тулиновской конф. по физике взаимодействия заряженных частиц с кристаллами, Москва. 2021. С. 126.
- Поплавский В.В., Дорожко А.В., Матыс В.Г. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2016. № 9. С. 104. https://doi.org/10.7868/S0207352816050152
- Слинкин А.А. // Итоги науки и техники. Кинетика и катализ. 1982. Т. 10. С. 5.
- Komarov F.F., Poplavskij V.V. // Radiat. Effects. 1988. V. 106. P. 1. https://doi.org/10.1080/00337578808013724
- Wolf G.K. // J. Vac. Scie. Technol. A. 1992. V. 10. P. 1757. https://doi.org/10.1116/1.577743
- Gullá A.F., Saha M.S., Allen R.J., Mukerjee S. // Electrochem. Solid State Lett. 2005. V. 8. Iss. 10. P.A504. https://doi.org/10.1149/1.2008887
- Поплавский В.В., Мищенко Т.С., Матыс В.Г. // ЖТФ. 2010. Т. 80. С. 138. https://doi.org/10.1134/S1063784210020222
- Поплавский В.В., Мищенко Т.С., Матыс В.Г. // Персп. Материалы. 2009. № 6. С. 12.
- Поплавский В.В., Мищенко Т.С., Матыс В.Г. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2010. № 7. С. 33. https://doi.org/10.1134/S1027451010040051
- Поплавский В.В., Стельмах Т.С., Матыс В.Г. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2012. № 9. С. 45. https://doi.org/10.1134/S1027451012090121
- Поплавский В.В., Дорожко А.В., Матыс В.Г. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2019. № 12. С. 94. https://doi.org/10.1134/S102745101905032X
- Xue T., Attarilar S., Liu S., Liu J., Song X., Li L., Zhao B., Tang Y. // Front. Bioeng. Biotechnol. 2020. V. 8. P. 603072. https://doi.org/10.3389/fbioe.2020.603072
- Mani G., Porter D., Grove K., Collins S., Ornberg A., Shulfer R. // J. Biomed. Mater. Res. A. 2022. V. 110. P. 1291. https://doi.org/10.1002/jbm.a.37373
- Ge X., Li T., Yu M , Zhu H., Wang Q., Bi X., Xi T., Wu X., Gao Y. // Biomedical Engineering. 2022. V. 3. https://doi.org/10.1515/bmt-2022-021 1
- Liu J., Liu J., Attarilar S., Wang C., Tamaddon M., Yang C., Xie K., Yao J., Wang L., Liu C., Yujin Tang Y. // Front. Bioeng. Biotechnol. 2020. V. 8. P. 576969. https://doi.org/10.3389/fbioe.2020.576969
- Chen Z., Wang Z., Qiu W., Fang F. // Front. Bioconjugate Chem. 2021. V. 32. P. 627. https://doi.org/10.1021/acs.bioconjchem.1c00129
- Wan R., Chu S., Wang, X., Lei L., Tang H., Hu G., Dong L., Li D., Gu H. // J. Biomed. Mater. Res. B. 2020. V. 108. P. 3008. https://doi.org/10.1002/jbm.b.34630
- Li L., Li Q., Zhao M., Dong L., Wu J., Li D. // ACS Biomater. Sci. Eng. 2019. V. 5. P. 3303. https://doi.org/10.1021/acsbiomaterials.9b00248
- Hempel F., Finke B., Zietz C., Bader R., Weltmann K. D., Polak M. // Surf. Coat. Technol. 2014. V. 256. P. 52. https://doi.org/10.1016/j.surfcoat.2014.01.027
- Wang L., Luo Q., Zhang X., Qiu J., Qian S., Liu X. // Bioact Mater. 2021. V. 6. P. 64. https://doi.org/10.1016/j.bioactmat.2020.07.012
- Chao X., Cai D., Ji T., Li K., Qiao Y., Liu X. // ACS Biomater. Sci. Eng. 2018. V. 4. P. 3185. https://doi.org/10.1021/acsbiomaterials.8b00501
- Xin Y.C., Chu P.K. // Surface Engineering of Light Alloys. 2010. Р. 362. https://doi.org/10.1533/9781845699451.2.362
- Poplavsky V.V., Komarov F.F., Luhin V.G., Pil’ko V.V., Partyka J. // Acta Phys. Polon. A. 2015. V. 128. P. 946. https://doi.org/10.12693/APhysPolA.128.946
- Поплавский В.В., Дорожко А.В. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2013. № 4. С. 9. https://doi.org/10.1134/S1027451013020444
补充文件
