Influence of Solar Electromagnetic Radiation on the Optical Properties of Micro-, Submicro- and Nanopowders of ZnO

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The diffuse reflection spectra of micro-, submicro- and nanopowders of ZnO after irradiation with solar electromagnetic radiation were researcherd. High purity ZnO powders purchased from Aladdin Chemistry were used. Average particle sizes of the studied powders were: from 800 to 3000 nm for micropowders, from 100 to 300 nm for submicropowders, 20–50 nm for nanopowders. Irradiation of the powders under study with electromagnetic radiation from the Solar was carried out for 2, 5, 10 and 15 h. The research results showed that the reflectivity of the surface of zinc oxide micropowders in the wavelength range from 200 to 2000 nm is higher than that of submicro- and nanopowders. The contribution to the formation of the integral absorption band responsible for the degradation of the optical properties of ZnO micro- and nanopowders is made by induced defects of the cationic sublattice, and of submicropowders — defects of the anionic sublattice and acceptor-donor pairs. Approximately the same intensity of absorption bands of defects in ZnO submicropowders explains the small change in the integral absorption coefficient of solar radiation for this type of powder. This explains the higher radiation resistance of zinc oxide submicropowders to the action of solar spectrum quanta under the same irradiation conditions.

全文:

受限制的访问

作者简介

I. Verkhoturova

Аmur State University

编辑信件的主要联系方式.
Email: rusia@mail.ru
俄罗斯联邦, Blagoveshchensk

V. Neshchimenko

Аmur State University

Email: v1ta1y@mail.ru
俄罗斯联邦, Blagoveshchensk

M. Mikhailov

Tomsk State University of Control Systems and Radioelectronics

Email: rusia@mail.ru
俄罗斯联邦, Tomsk

参考

  1. Sokolovskiy A., Plis E., Hoffmann R., Bengtson M., Ferguson D. // Surf. Coat. Technol. 2022. V. 451. Р. 129030. https://www.doi.org/10.1016/j.surfcoat.2022.129030
  2. Kiomarsipour N., Razavi R. S., Ghani K. // Dyes and Pigments. 2013. V. 96. P. 403. https://www.doi.org/10.1016/j.dyepig.2012.08.019
  3. Михайлов М.М., Лапин А.Н., Юрьев С.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2021. № 9. С. 63. https://www.doi.org/10.31857/S1028096021090107
  4. Lv J., Yang J., Li X., Chai Z. // Dyes and Pigments. 2019. V. 164. P. 87. https://www.doi.org/10.1016/j.dyepig.2019.01.014
  5. Юрина В.Ю., Дудин А.Н., Нещименко В.В., Михайлов М.М. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. № 2. С. 33. https://www.doi.org/10.17223/00213411/65/8/3
  6. Дудин А.Н., Юрина В.Ю., Нещименко В.В., Ли Ч. // Научно-технические ведомости СПбГПУ. Физико-математические науки. 2022. Т. 15. № 3.1. С. 101. https://www.doi.org/10.18721/JPM.153.117
  7. Lv J., Fang M. // Mater. Lett. 2018. V. 218. P. 18. https://www.doi.org/10.1016/j.matlet.2018.01.137
  8. Neshchimenko V., Li Ch., Mikhailov M., Lv J. // Nanoscale. 2018. V. 10. Iss. 47. P. 22335. https://www.doi.org/10.1039/C8NR04455D
  9. Нещименко В.В., Ли Ч., Михайлов М.М. //Поверхность. Рентген., синхротр. и нейтрон. исслед. 2019. № 1. С. 88. https://www.doi.org/10.1134/S0207352819010165
  10. Нещименко В.В. Структура, свойства и радиационная стойкость оксидных микро- и нанопорошков и отражающих покрытий, изготовленных на их основе: Дис. д-ра физ.-мат. наук: 01.04.07. Томск: ТУСУР, 2017. 273 с.
  11. Mikhailov M.M., Yuryev S.A., Lapin A.N., Karanskiy V.V. // Symmetry. 2020. V. 12. P. 1021. https://www.doi.org/10.3390/sym12061021
  12. Верхотурова И.В., Нещименко В.В., Юрина В.Ю., Бурова А.И. // Вестник АмГУ. Естественные и экономические науки. 2022. № 97. С. 28. https://www.doi.org/10.22250/20730268_2022_97_28
  13. Kositsyn L.G., Mikhailov M.M., Kuznetsov N.Ya., Dvoretskii M.I. // Instrum. Exp. Tech. 1985. V. 28. № 4. P. 929.
  14. ASTM E490-00a. Standard Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables. West Conshohocken: ASTM International, 2019.
  15. ASTM E903-96. Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres. West Conshohocken: ASTM International, 2012.
  16. Varley J.H.O. // Nature. 1954. V. 174. P. 886.
  17. Воробьев А.А., Завадовская Е.К., Анненков Ю.М., Лисицын В.М., Воробьев В.С. // Известия Томского ордена трудового красного знамени политехнического Института им. С.М. Кирова. 1969. Т. 199. С. 119.
  18. Крегер Ф. Химия несовершенных кристаллов. М.: Мир, 1969. 654 с.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. SEM images of micro- (a), submicro- (b) and nanopowders (c) of zinc oxide.

下载 (156KB)
3. Fig. 2. Diffractograms from micro- (1), submicro- (2) and nanopowders (3) of ZnO. The labelled diffraction maxima correspond to the hexagonal structure of wurtzite.

下载 (78KB)
4. Fig. 3. Diffuse reflectance spectra of micro- (1), nano- (2) and submicro- (3) ZnO powders.

下载 (71KB)
5. Fig. 4. Dependence of the values of the change in the solar radiation absorption coefficient as micro- (1), nano- (2) and submicro-powders (3) of zinc oxide after irradiation with solar EMI on the exposure time.

下载 (67KB)
6. Fig. 5. Induced absorption spectra of micro- (a), nano- (b) and submicro-powders (c) of zinc oxide when exposed to EMI for 2 (1); 5 (2); 10 (3); 15 h (4).

下载 (206KB)
7. Fig. 6. Decomposition into individual bands of the induced absorption spectra of micro- (a), submicro- (b) and nanopowders (c) of zinc oxide after 15 h of EMI exposure.

下载 (276KB)

版权所有 © Russian Academy of Sciences, 2025