Теоретическое изучение электронного обмена при скользящем рассеянии на тонких металлических пленках
- Авторы: Гайнуллин И.К.1
-
Учреждения:
- Московский государственный университет им. М.В. Ломоносова
- Выпуск: № 10 (2024)
- Страницы: 87-93
- Раздел: Статьи
- URL: https://rjdentistry.com/1028-0960/article/view/664737
- DOI: https://doi.org/10.31857/S1028096024100116
- EDN: https://elibrary.ru/SGYOKN
- ID: 664737
Цитировать
Аннотация
Рассмотрен электронный обмен при скользящем рассеянии ионов водорода на тонких металлических пленках. Основной исследуемой величиной является фракция выхода, т.е. вероятность формирования определенного зарядового состояния рассеянной частицы (в рассматриваемом случае H–) как функция компоненты скорости, параллельной поверхности образца. На основе анализа распределения электрона в пространстве волновых векторов с использованием общепринятой модели смещения сфер Ферми было показано, что зависимость вероятности формирования отрицательного иона водорода от параллельной компоненты скорости должна быть монотонно убывающей.
Об авторах
И. К. Гайнуллин
Московский государственный университет им. М.В. Ломоносова
Автор, ответственный за переписку.
Email: ivan.gainullin@physics.msu.ru
Россия, Москва
Список литературы
- Martynenko Yu. V. // Sov. Phys. Solid State. 1964. V. 3529. P. 2003.
- Yurasova V.E., Chernysh V.S., Kuvakin M.V., Shelyakin L.B. // JETP Lett. 1975. V. 21. № 3. P. 79.
- Xiao Y., Shi Y., Liu P., Zhu Y., Gao L., Guo Y., Chen L., Chen X., Esaulov V. // Nucl. Instrum. Methods Phys. Res. B. 2019. V. 450. P. 73. http://doi.org/10.1016/j.nimb.2018.11.022
- Mamedov N.V., Mamedov I.M. // Bull. Russ. Acad. Sci.: Phys. 2020. V. 84. P. 713. http://doi.org/10.3103/S1062873820060155
- Balakshin Y.V., Kozhemiako A.V., Evseev A.P., Minnebaev D.K., Elsehly E.M. // Moscow University Phys. Bull. 2020. V. 75. Р. 218. http://doi.org/10.3103/S0027134920030030
- Shemukhin A.A., Smirnov A.M., Evseev A.P., Vorobyeva E.A., Kozhemiako A.V., Minnebaev D.K., Balakshin Y.V., Nazarov A.V., Chernysh V.S. // Moscow University Phys. Bull. 2020. V. 75. P. 133. http://doi.org/10.3103/S0027134920020113
- Tolstogouzov A., Daolio S., Pagura C. // Surf. Sci. 1999. V. 441. P. 213. http://doi.org/10.1016/S0039-6028(99)00881-X
- Elovikov S.S., Zykova E.Yu., Mosunov A.S. et al. // Bull. Russ. Acad. Sci. Phys. 2002. V. 66. P. 558.
- Bogomolova L.D., Borisov A.M., Kurnaev V.A., Mashkova E.S. // Nucl. Instrum. Methods Phys. Res. B. 2003. V. 212. P. 164. http://doi.org/10.1016/S0168-583X(03)01730-0
- Zinoviev A.N., Babenko P.Y., Meluzova D.S., Shergin A.P. // JETP Lett. 2018. V. 108. P. 633. http://doi.org/10.1134/S0021364018210154
- Los J., Geerlings J.J.C. // Phys. Rep. 1990. V. 190. P. 133.
- Karaseov P.A., Karabeshkin K.V., Titov A.I., Shilov V.B., Ermolaeva G.M., Maslov V.G., Orlova A.O. // Semiconductors. 2014. V. 48. № 4. P. 446. http://doi.org/10.1134/S1063782614040125
- Andrianova N.N., Borisov A.M., Mashkova E.S., Shulga V.I. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2016. V. 10. P. 412. http://doi.org/10.1134/S1027451016020233
- Zykova E.Y., Khaidarov A.A., Ivanenko I.P., Gainullin I.K. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2012. V. 6. P. 877. http://doi.org/10.1134/S102745101211016X
- Gainullin I.K. // Surf. Sci. 2019. V. 681. P. 158. http://doi.org/10.1016/j.susc.2018.11.003
- Gainullin I.K. // Physics-Uspekhi. 2020. V. 63. № 9. http://doi.org/10.3367/UFNe.2019.11.038691
- Gainullin I. K // Surf. Sci. 2018. V. 677. P. 324. http://doi.org/10.1016/j.susc.2018.08.007
- Winter H. // Phys. Rep. 2002. V. 367. P. 387. http://doi.org/10.1016/S0370-1573(02)00010-8
- Liu P., Gainullin I.K., Esaulov V.A. et al. // Phys. Rev. A. 2020. V. 101. P. 032706. http://doi.org/10.1103/PhysRevA.101.032706
- Shi Y., Yin L., Ding B. et al. // Phys. Rev. A. 2022. V. 105. P. 042807. http://doi.org/10.1103/PhysRevA.105.042807
- Van Wunnik J.N.M., Brako R., Makoshi K., Newns D.M. // Surf. Sci. 1983. V. 126. № 1–3. P. 618.
- Borisov A.G., Winter H. // Nucl. Instrum. Methods Phys. Res. B. 1996. V. 115. № 1–4. P. 1425. http://doi.org/10.1016/0168-583X(96)01518-2
- Усман Е.Ю., Гайнуллин И.К., Уразгильдин И.Ф. // Вестн. Моск. ун-та. 2005. № 2. С. 23.
- Amanbaev E.R., Shestakov D.K., Gainullin I.K. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2009. V. 3. P. 865. http://doi.org/10.1134/S1027451009060032
- Magunov A.A., Shestakov D.K., Gainullin I.K., Urazgil’din I.F. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2008. V. 2. P. 764. http://doi.org/10.1134/S1027451008050170
- Shestakov D.K., Polivnikova T.Yu., Gainullin I.K., Urazgildin I.F. // Nucl. Instrum. Methods Phys. Res. B. 2009. V. 267. P. 2596. http://doi.org/10.1016/j.nimb.2009.05.043
- Gainullin I.K., Urazgildin I.F. // Phys. Rev. B. 2006. V. 74. P. 205403. http://doi.org/10.1103/PhysRevB.74.205403
- Souda R., Ayzawa T., Hayami W., Otani S., Ishizawa Y. // Phys. Rev. B. 1990. V. 42. P. 7761. http://doi.org/10.1103/PhysRevB.42.7761
- Amanbaev E.R., Gainullin I.K., Zykova E.Yu., Urazgildin I.F. // Thin Solid Films. 2011. V. 519. P. 4737. http://doi.org/10.1016/j.tsf.2011.01.026
- Gainullin I.K. // Phys. Rev. A. 2019. V. 100. P. 032712. http://doi.org/10.1103/PhysRevA.100.032712
- Canário , Borisov , Gauyacq , Esaulov // Phys. Rev. B. 2005. V. 71. № 12. P. 121401. http://doi.org/10.1103/PhysRevB.71.121401
- Gainullin I.K., Usman E.Yu., Song Y.W., Urazgil’din I.F. // Vacuum. 2003. V. 72. P. 263. http://doi.org/10.1016/j.vacuum.2003.07.001
- Usman E.Yu., Urazgil’din I.F., BorisovA.G., Gauyacq J.P. // Phys. Rev. B. 2001. V. 64. P. 205405. http://doi.org/10.1103/PhysRevB.64.205405
- Gainullin I.K., Usman E.Y., Urazgil’din I.F. // Nucl. Instrum. Methods Phys. Res. B. 2005. V. 232. P. 22. http://doi.org/10.1016/j.nimb.2005.03.019
- Moskalenko S.S., Gainullin I.K. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2023. V. 17. P. 299. http://doi.org/10.1134/S1027451022060155
- Obreshkov B., Thumm U. // Phys. Rev. A. 2013. V. 87. P. 022903. http://doi.org/10.1103/PhysRevA.87.022903
- Melkozerova J.A., Gainullin I.K. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2023. V. 12. P. 1175. http://doi.org/10.1134/S1027451022060143
- Gao L., Zhu Y., Shi Y., Liu P., Xiao Y., Li G., Liu Y., Esaulov V.A., Chen X., Chen L., Guo Y. // Phys. Rev. A. 2017. V. 96. P. 052705. http://doi.org/10.1103/PhysRevA.96.052705
- Klimov N.E., Gainullin I.K. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2023. V. 17. № 1. P. 72. http://doi.org/10.1134/S1027451023010123
- Shaw J., Zhang Y., Doerr D., Chakraborty H., Monismith D. // Phys. Rev. A. 2019. V. 98. P. 052705. http://doi.org/10.1103/PhysRevA.98.052705
- Shaw J., Monismith D., Zhang Y., Doerr D., Chakraborty H.S. // Atoms. 2020. V. 7. P. 89. http://doi.org/10.3390/atoms7030089
- Iglesias-García A., Romero M.A., García E.A., Goldberg E.C. // Phys. Rev. B. 2020. V. 102. P. 115406. http://doi.org/10.1103/PhysRevB.102.115406
- Gainullin I.K., Sonkin M.A. // Phys. Rev. A. 2015. V. 92. P. 022710. http://doi.org/10.1103/PhysRevA.92.022710
- Gainullin I.K. // Moscow University Phys. Bull. 2019. V. 74. P. 585. http://doi.org/10.3103/S0027134919060158
- Gainullin I.K. // Comp. Phys. Commun. 2017. V. 210. P. 72. http://doi.org/10.1016/j.cpc.2016.09.021
- Gainullin I.K., Sonkin M.A. // Comp. Phys. Commun. 2015. V. 188. P. 68. http://doi.org/10.1016/j.cpc.2014.11.005
- Gainullin I.K. // Phys. Rev. A. 2017. V. 95. P. 052705. http://doi.org/10.1103/PhysRevA.95.052705
- Gainullin I.K., Sonkin M.A. // Phys. Rev. A. 2015. V. 92. P. 022710. http://doi.org/10.1103/PhysRevA.92.022710
- Aleksandrov A.F., Gainullin I.K., Sonkin M.A. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2020. V. 14. P. 791. http://doi.org/10.1134/S1027451020040205
- Majorosi S., Czirják A. // Comp. Phys. Comm. 2016. V. 208. P. 9. http://doi.org/10.1016/j.cpc.2016.07.006
- Gainullin I.K., Klavsyuk A.L. // Bull. Russ. Acad. Sci. Phys. 2012. V. 76. P. 542. http://doi.org/10.3103/S1062873812050115
- Fu Y., Zeng J., Yuan J. // Comp. Phys. Commun. 2017. V. 210. P. 181. http://doi.org/10.1016/j.cpc.2016.09.016
- Gainullin I.K., Sonkin M.A. // Math. Models Comput. Simulations. 2019. V. 11. P. 964. http://doi.org/10.1134/S2070048219060048
- Lüdde H.J., Horbatsch M., Kirchner T. // Eur. Phys. 2018. V. 91. P. 99. http://doi.org/10.1140/epjb/e2018-90165-x
- Zhou S.P., Liu A.H., Liu F.C., Wang C.C., Ding D.J. // Chin. Phys. B. 2019. V. 28. P. 083101. http://doi.org/10.1088/1674-1056/28/8/083101
- Liu Q., Liu F., Hou C. // Proc. Comput. Sci. 2020. V. 171. P. 312. http://doi.org/10.1016/j.procs.2020.04.032
- Cohen J.S., Fiorentini G. // Phys. Rev. A. 1986. V. 33. P. 1590.
- Jennings P.J., Jones R.O., Weinert M. // Phys. Rev. B. 1988. V. 37. P. 6113.
Дополнительные файлы
