Microstructure and deformation behavior of novel metal–ceramic laminated composites Ta/Ti3Al(Si)C2–TiC

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

New metal–ceramic laminated composites Ta/Ti3Al(Si)C2–TiC were obtained by spark plasma sintering. The samples were synthesized at a temperature of 1250°C and a pressure of 50 MPa for 5 min. For the formation of composites, preceramic paper with a powder filler based on the MAX phase Ti3Al(Si)C2, as well as and metal foils made of tantalum, were used. The phase composition, microstructure and elemental composition were analyzed by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy, respectively. It was found that as a result of sintering, dense multilayer composites were formed, consisting of tantalum metal layers, ceramic layers containing Ti3Al(Si)C2, TiC and Al2O3 phases, as well as reaction layers ~13 μm thick at the metal–ceramic interface, enriched with Ta, Al and Si. Based on mechanical test data, the ultimate bending strength of the obtained composites was determined (σbs = ~430 MPa). Metal–ceramic laminated composites with a refractory tantalum layer were shown to exhibit a ductile fracture mechanism, accompanied by a more than fourfold increase in absolute deformation compared to a Ti3Al(Si)C2-based ceramic composite. This is achieved due to deflection, branching of cracks at the metal–ceramic interface and plastic deformation of tantalum layers.

全文:

受限制的访问

作者简介

A. Abdulmenova

National Research Tomsk Polytechnic University

编辑信件的主要联系方式.
Email: ava75@tpu.ru
俄罗斯联邦, Tomsk, 634050

E. Kashkarov

National Research Tomsk Polytechnic University

Email: egor_kashkarov@mail.ru
俄罗斯联邦, Tomsk, 634050

D. Krotkevich

National Research Tomsk Polytechnic University

Email: ava75@tpu.ru
俄罗斯联邦, Tomsk, 634050

N. Travitzky

Friedrich-Alexander-Universitat Erlangen–Nürnberg

Email: ava75@tpu.ru

Department of Materials Science, Glass and Ceramics

德国, Erlangen, 91054

参考

  1. Medvedovski E. // Wear. 2001. V. 249. № 9. P. 821. https://doi.org/10.1016/S0043-1648(01)00820-1
  2. Joshua P. // Mechanical Properties of Ceramics. Canada: Springer, 2014. P. 782. https://doi.org/10.1007/978-3-319-04492-7
  3. Munz D., Fett T. // Ceramics: Mechanical Properties, Failure Behaviour, Materials Selection. New York: Springer, 1999. P. 299. https://doi.org/10.1007/978-3-642-58407-7
  4. Shvydyuk K.O., Nunes-Pereira J., Rodrigues F.F., Silva A.P. // Ceramics. 2023. V. 6. P. 195. https://doi.org/10.3390/ceramics6010012
  5. Cramer C.L., Ionescu E., Graczyk-Zajac M., Nelson A.T., Katoh Y., Haslam J.J., Wondraczek L., Aguirre T.G., LeBlanc S., Wang H., Masoudi M., Tegeler E., Riedel R., Colombo R., Minary-Jolandan M. // J. Eur. Ceram. Soc. 2022. V. 42. № 7. P. 3049. https://doi.org/10.1016/j.jeurceramsoc.2022.01.058
  6. Chen X., Bei G. // Materials. 2017. V. 10. P. 366. https://doi.org/10.3390/ma10040366
  7. Sun Z.M. // Int. Mater. Rev. 2011. V. 56. № 3. P. 143. https://doi.org/10.1179/1743280410Y.0000000001
  8. Eklund P., Beckers M., Jansson U., Högberg H., Hultman L. // Thin Solid Films. 2010. V. 518. № 8. P. 1851. https://doi.org/10.1016/j.tsf.2009.07.184
  9. Lei X., Lin N. // Crit. Rev. Solid State Mater. Sci. 2022. V. 47. № 5. P. 736. https://doi.org/10.1080/10408436.2021.1966384
  10. Barsoum M.W., Radovic M. // Annu. Rev. 2011. V. 41. P. 195. https://doi.org/10.1146/annurev-matsci-062910100448
  11. Hadi M.A. // J. Phys. Chem. Solids. 2020. V. 138. P. 109275. https://doi.org/10.1016/j.jpcs.2019.109275
  12. Gonzalez-Julian J. // J. Am. Ceram. Soc. 2021. V. 104. № 2. P. 659. https://doi.org/10.1111/jace.17544
  13. Basu S., Obando N., Gowdy A., Karaman I., Radovic M. // J. Electrochem. Soc. 2011. V. 159. № 2. P. 90. https://doi.org/10.1149/2.052202jes
  14. Li X., Xie X., Gonzalez-Julian J., Malzbender J., Yang R. // J. Eur. Ceram. Soc. 2020. V. 40. № 15. P. 5258. https://doi.org/10.1016/j.jeurceramsoc.2020.07.043
  15. Сорокин О.Ю., Кузнецов Б.Ю., Лунегова Ю.В., Ерасов В.С. // Композиционные материалы. 2020. Т. 88. № 4–5. С. 42. https://doi.org/10.18577/2307-6046-2020-0-45-42-53
  16. Xie X., Yang R., Cui Y., Jia Q., Bai C. // J. Mater. Sci. Technol. 2020. V. 38. P. 86. https://doi.org/10.1016/j.jmst.2019.05.070
  17. Luo Y.M., Li S.Q., Chen J., Wang R.G., Li J.Q., Pan W. // J. Am. Ceram. Soc. 2002. V. 85. № 12. P. 3099. https://doi.org/10.1111/j.1151-2916.2002.tb00589.x
  18. Lagos M.A., Pellegrini C., Agote I., Azurmendi N., Barcena J., Parco M., Silvestroni L., Zoli L., Sciti D. // J. Eur. Ceram. Soc. 2019. V. 39. № 9. P. 2824. https://doi.org/10.1016/j.jeurceramsoc.2019.03.037
  19. He G., Xu J., Zhang Z., Qian Y., Zuo J., Li M., Liu C. // Mater. Sci. Eng. A. 2021. V. 827. P. 142069. https://doi.org/10.1016/j.msea.2021.142069
  20. Ashby M.F., Cebon D. // J. Phys. IV France. 1993. V. 3. № 7. P. 1. https://doi.org/10.1051/jp4:1993701
  21. Wu C., Wang Z., Li Q., Shi G. // J. Asian Ceram. Soc. 2014. V. 2. № 4. P. 322. https://doi.org/10.1016/j.jascer.2014.07.007
  22. Kashkarov E.B., Krotkevich D.G., Abdulmenova A.V., Ivashutenko A.S., Perevislov S.N., Lider A.M., Travitzky N. // Materialia. 2023. V. 27. P. 101673. https://doi.org/10.1016/j.mtla.2023.101673
  23. Kashkarov E.B., Abdulmenova A.V., Pushilina N.S., Syrtanov M.S., Mingazova Y.R., Nassyrbayev A., Krotkevich D.G., Travitzky N.A. // J. Alloys Compd. 2024. V. 982. P. 173848. https://doi.org/10.1016/j.jallcom.2024.173848
  24. Chen W.S., Ho H.J., Lin K.Y. // Materials. 2019. V. 12. P. 1220. https://doi.org/10.3390/ma12081220
  25. Laing M. // J. Chem. Educ. 2001. V. 78. № 8. P. 1054. https://doi.org/10.1021/ed078p1054
  26. Lunk H.J., Hartl H. // ChemTexts. 2019. V. 5. № 3. P. 1. https://doi.org/10.1007/s40828-019-0088-1
  27. Krotkevich D.G., Kashkarov E.B., Syrtanov M.S., Murashkina T.L., Lider A.M., Schmiedeke S., Travitzky N. // Ceram. Int. 2021. V. 47. № 9. P. 12221. https://doi.org/10.1016/j.ceramint.2021.01.070
  28. Sun X., Han W., Liu Q., Hu P., Hong C. // Mater. Des. 2010. V. 31. № 9. P. 4427.
  29. Knabl W., Leichtfried G., Stickler R. // Refractory Metals and Refractory Metal Alloys. Switzerland: Springer Nature, 2018. P. 307. https://doi.org/10.1007/978-3-319-69743-7

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Diffraction patterns of pre-ceramic paper (1) and the cross-section of the sintered laminated Ta/TAC–TiC composite (2).

下载 (18KB)
3. Fig. 2. SEM image of the cross-section of the laminated Ta/TAC–TiC composite. RS – reaction layer.

下载 (24KB)
4. Fig. 3. SEM image and corresponding distribution maps of reaction layer elements.

下载 (57KB)
5. Fig. 4. Stress-strain curves of a monolithic TAC sample (1) and a laminated Ta/TAC–TiC composite (2).

下载 (14KB)
6. Fig. 5. SEM images of the cross-section of the fracture surface (a) and the crack propagation region in the laminated Ta/TAC–TiC composite (b).

下载 (40KB)

版权所有 © Russian Academy of Sciences, 2024