Accuracy of different types of surgical guides for dental implant placement

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: The advancement of three-dimensional (3D) imaging techniques and implant planning software has contributed to a wide adoption of prosthetically guided implant placement.

AIM: This study aims to examine the virtual planning accuracy of dental implant placement using various surgical templates.

MATERIALS AND METHODS: The study included 24 partially and fully edentulous patients. Patients were divided into four groups using a parallel group design: templates for pilot osteotomy made by 3D printing (group I), full-guided templates made by 3D printing (group II), surgical templates for pilot osteotomy made by milling (group III), and full-guided templates made by milling (group IV). The accuracy of dental implant position was assessed by comparing the planned and actual position of the implants using preoperative and postoperative computed tomography. Three mean deviation parameters (angular, at the neck position, and at the apex position) were defined to evaluate the discrepancy between the planned and placed implant positions.

RESULTS: The best results were obtained in group III, where dental implant placement was performed using milled surgical templates for pilot osteotomy. The mean angular deviation, deviation at the neck, and deviation at the apex of the implant were 4.01±3.21°, 0.38±0.23 mm, and 0.56±0.51 mm, respectively (p <0.001 for all). The mean angular deviation in the group that used milled surgical templates for the full-guided osteotomy was 5.66±5.38°, with deviations at the implant neck and apex of 0.73±0.71 and 0.68±0.67 mm, respectively (p <0.001 for all), demonstrating high accuracy of implant placement within the “safety zone.”

Lower accuracy scores were found in groups I and II, when 3D printed templates were used. The mean angular deviation in the pilot osteotomy group was 7.71±5.94°, the mean deviation at the neck was 1.02±1.07 mm, and the mean deviation at the apex of the implant was 1.40±1.69 mm (p <0.001 for all). In the group for full-guided osteotomy, the mean angular deviation, deviation at the neck, and deviation at the apex of the implant were 6.4±6.21°, 0.58±0.45 mm, and 0.83±0.80 mm, respectively (p <0.001 for all).

CONCLUSION: The use of surgical templates in dental implant placement allows for a high accuracy in implant position. Milled surgical templates for dental implants are more accurate than 3D-printed templates, allowing us to introduce surgical templates into clinical practice to improve dental care quality.

Full Text

Restricted Access

About the authors

Alexey Yu. Drobyshev

Moscow State University of Medicine and Dentistry named after A.I. Evdokimov

Email: dr.drobyshev@gmail.com
ORCID iD: 0000-0002-1710-6923

md, dr. sci. (med.), professor

Russian Federation, 9a bldg. 1 Vucheticha street, 127206 Moscow

Daria S. Vaulina

Moscow State University of Medicine and Dentistry named after A.I. Evdokimov

Email: vaudoc@mail.ru
ORCID iD: 0000-0002-4558-7082
Russian Federation, 9a bldg. 1 Vucheticha street, 127206 Moscow

Nukolay A. Redko

Moscow State University of Medicine and Dentistry named after A.I. Evdokimov

Email: dr.redko@mail.ru
ORCID iD: 0000-0001-7807-9351

md, cand. sci. (med.)

Russian Federation, 9a bldg. 1 Vucheticha street, 127206 Moscow

Egor V. Pankov

Moscow State University of Medicine and Dentistry named after A.I. Evdokimov

Author for correspondence.
Email: pankov.doc@mail.ru
ORCID iD: 0000-0003-0234-554X
Russian Federation, 9a bldg. 1 Vucheticha street, 127206 Moscow

References

  1. Tsitsiashvili AM, Panin AM, Lepilin AV, Chuvilkin VI, Akhmedov GD. Implant surgery in partially edentulous patients with alveolar bone deficiency. Stomatologiya. 2019;98(1):30–33. (In Russ). doi: 10.17116/stomat20199801130
  2. Dubova LV, Melnik AS, Stupnikov AA, Savelyev VV. Comparative evaluation of data kineseography and electromyography at patients without signs of TMJ disorders and with. Endodontiya Today. 2016;(2):11–15. (In Russ).
  3. Tereshchuk SV, Ivanov SYu. The influence of zero-gravity on the volume of the augmented in the posterior maxilla bone and the survival of the dental implants placed in this bone. Clinical Dentistry. 2021;24(4):74–79. (In Russ). doi: 10.37988/1811-153X_2021_4_74
  4. Tsitsiashvili AM, Gurevich KG, Panin AM, Akimochkina LA. Quality of life of patients with partially edentolous atrophy jaws getting dental implant treatment. Sistemnyi analiz i upravlenie v biomeditsinskikh sistemakh. 2019;18(4):138–143. (In Russ). doi: 10.25987/VSTU.2020.18.4.017
  5. Ivanov SYu, Muraev AA, Rukina EA, Bunev AA. Immediate dental implantation. Sovremennye problemy nauki i obrazovaniya. 2015;(5):230. (In Russ).
  6. Olesova VN, Kashchenko PV, Bronshtein DA, Magamedkhanov MIu, Khavkin VA. Advantage of computer planning of intraosseous dental implantation. Stomatologiya. 2011;90(2):43–48. (In Russ).
  7. Ivashchenko AV, Bayrikov AI, Monakov DV, Monakov VA. Experimental substantiation of the use of the navigation system in dental implantology. Russian Journal of Dentistry. 2014;18(6):12–14. (In Russ).
  8. Geng W, Liu C, Su Y. Accuracy of different types of computer-aided design/computer-aided manufacturing surgical guides for dental implant placement. Int J Clin Exp Med. 2015;8(6):8442–8449.
  9. Yafi F, Camenisch B, Al-Sabbagh M. Is digital guided implant surgery accurate and reliable? Dent Clin North Am. 2019;63(3):381–397. doi: 10.1016/j.cden.2019.02.006
  10. Bover-Ramos F, Viña-Almunia J, Cervera-Ballester J, Peñarrocha-Diago M, García-Mira B. Accuracy of implant placement with computer-guided surgery: a systematic review and meta-analysis comparing cadaver, clinical, and in vitro studies. Int J Oral Maxillofac Implants. 2018;33(1):101–115. doi: 10.11607/jomi.5556
  11. Vokulova JA, Zhulev EN. A method for evaluation of dental implant placement accuracy using digital technologies. Siberian Medical Review. 2022;(1):59–65. (In Russ). doi: 10.20333/25000136-2022-1-59-65
  12. Cristache СM, Gurbanescu S. Accuracy evaluation of a stereolithographic surgical template for dental implant insertion using 3D superimposition protocol. Int J Dent. 2017;2017:4292081. doi: 10.1155/2017/4292081
  13. Tallarico M, Martinolli M, Kim Y, et al. Accuracy of computer-assisted template-based implant placement using two different surgical templates designed with or without metallic sleeves: a randomized controlled trial. Dent J. 2019;7(2):41. doi: 10.3390/dj7020041
  14. Schulz MC, Hofmann F, Range U. Pilot-drill guided vs. full-guided implant insertion in artificial mandibles — a prospective laboratory study in fifth-year dental students. Int J Implant Dent. 2019;5(1):23. doi: 10.1186/s40729-019-0176-4
  15. Pascual D, Vaysse J. Chirurgie implantaire et prothèse guidées et assistées par ordinateur : le flux numérique continu. Rev Stomatol Chir Maxillofac Chir Orale. 2016;117(1):28–35. (In French). doi: 10.1016/j.revsto.2015.11.011
  16. Tahmaseb A, Wu V, Wismeijer D, Coucke W, Evans C. The accuracy of static computer-aided implant surgery: A systematic review and meta-analysis. Clin Oral Implants Res. 2018;29 Suppl. 16:416–435. doi: 10.1111/clr.13346
  17. Unsal GS, Turkyilmaz I, Lakhia S. Advantages and limitations of implant surgery with CAD/CAM surgical guides: A literature review. J Clin Exp Dent. 2020;12(4):e409–e417. doi: 10.4317/jced.55871
  18. Bencharit S, Staffen A, Yeung M, et al. In vivo tooth-supported implant surgical guides fabricated with desktop stereolithographic printers: fully guided surgery is more accurate than partially guided surgery. J Oral Maxillofac Surg. 2018;76(7):1431–1439. doi: 10.1016/j.joms.2018.02.010
  19. Flügge T, Derksen W, Te Poel J, et al. Registration of cone beam computed tomography data and intraoral surface scans — A prerequisite for guided implant surgery with CAD/CAM drilling guides. Clin Oral Implants Res. 2017;28(9):1113–1118. doi: 10.1111/clr.12925
  20. Tatakis DN, Chien HH, Parashis AO. Guided implant surgery risks and their prevention. Periodontol 2000. 2019;81(1):194–208. doi: 10.1111/prd.12292
  21. Drobyshev AYu, Vaulina DS, Red’ko NA. Otsenka tochnosti pozicionirovaniya dental’nykh implantatov s ispol’zovaniem stereolitographicheskikh khirurgicheskikh shablonov, izgotovlennykh po razlichnym opticheskim modelyam. In: Aktual’nuye voprosy stomatologii: Proceedings of the All-Russian V scientific-practical conference with international participation; 2021 May 13–14; Kirov. Kirov; 2021. P:48–50. (In Russ).
  22. Vaulina DS, Skakunov YaI, Red’ko NA, Drobyshev AYu. Predoperatsionnaya podgotovka patsientov pri planirovanii dental’noi implantatsii s ispol’zovaniem khirurgicheskogo shablona. Rossiiskaya stomatologiya. 2021;14(3):32–33. (In Russ).
  23. Cristache CM, Gurbanescu S. Accuracy evaluation of a stereolithographic surgical template for dental implant insertion using 3D superimposition protocol. Int J Dent. 2017;2017:4292081. doi: 10.1155/2017/4292081
  24. Ku JK, Lee J, Lee HJ, Yun PY, Kim YK. Accuracy of dental implant placement with computer-guided surgery: a retrospective cohort study. BMC Oral Health. 2022;22(1):8. doi: 10.1186/s12903-022-02046-z
  25. Gargallo-Albiol J, Barootchi S, Salomó-Coll O, Wang HL. Advantages and disadvantages of implant navigation surgery. A systematic review. Ann Anat. 2019;225:1–10. doi: 10.1016/j.aanat.2019.04.005
  26. Shen P, Zhao J, Fan L, et al. Accuracy evaluation of computer-designed surgical guide template in oral implantology. J Craniomaxillofac Surg. 2015;43(10):2189–2194. doi: 10.1016/j.jcms.2015.10.022
  27. Vercruyssen M, Cox C, Coucke W, et al. A randomized clinical trial comparing guided implant surgery (bone- or mucosa-supported) with mental navigation or the use of a pilot-drill template. J Clin Periodontol. 2014;41(7):717–723. doi: 10.1111/jcpe.12231
  28. Olesova VN, Romanov AS, Zaslavsky RS, Grishkov MS, Zveryaev AG. Frequency and subjective reasons for rejecting repeated prosthetics on implants. AI Burnasyan Federal Medical Biophysical Center Clinical Bulletin. 2022;(1):27–30. (In Russ). doi: 10.33266/2782-6430-2022-1-27-30
  29. Suriyan N, Sarinnaphakorn L, Deeb GR, Bencharit S. Trephination-based, guided surgical implant placement: A clinical study. J Prosthet Dent. 2019;121(3):411–416. doi: 10.1016/j.prosdent.2018.06.004
  30. Drobyshev AYu, Vaulina DS, Skakunov YaI, Redko NA. Fotoprotokol patsienta kak instrument obscheniya i metod obsledovaniya. Rossiiskaya stomatologiya. 2020;13(4):41–43. (In Russ).
  31. Yeung M, Abdulmajeed A, Carrico CK, Deeb GR, Bencharit S. Accuracy and precision of 3D-printed implant surgical guides with different implant systems: An in vitro study. J Prosthet Dent. 2020;123(6):821–828. doi: 10.1016/j.prosdent.2019.05.027

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Evaluation of the dental implants position relative to the planned one.

Download (160KB)
3. Fig. 2. Evaluation of the positioning accuracy of dental implants.

Download (132KB)
4. Fig. 3. Range diagram for a group of templates for pilot osteotomy made by 3D printing.

Download (125KB)
5. Fig. 4. Range diagram for a group of templates for full guided osteotomy made by 3D printing.

Download (96KB)
6. Fig. 5. Range diagram for a group of milled templates for pilot osteotomy.

Download (90KB)
7. Fig. 6. Range diagram for a group of milled templates for full guided implantation.

Download (98KB)

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86295 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80635 от 15.03.2021 г
.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies