Development and confirmation of the biological safety of hygiene products for the care of facial prostheses

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Currently, several patients with dental problems continue to suffer from various defects in the maxillofacial region. Therefore, the methods and techniques of orthopedic replacement for these defects, both as a standalone treatment and within a comprehensive interdisciplinary approach, must be enhanced. The nature of hygienic care and the means used play an important role in increasing the service life of facial epitheses. Literary sources have shown insufficient research in this area. Domestic and foreign literature is generally devoted to methods and means of hygiene for removable dentures. Moreover, the features of structural materials and methods of fixing facial epitheses require the search for other approaches to hygienic care.

AIM: To develop hygiene products for facial epitheses and to substantiate their toxicological safety.

MATERIALS AND METHODS: The care of maxillofacial prostheses using sprays and foams was proposed. To study their cytotoxicity, samples were prepared from photopolymer material for facial prostheses. The samples were treated with spray, foam, or their combination. To test the cytotoxic properties, a primary cell culture of stromal cells isolated from a biopsy of the mucosa of the alveolar process of the mandible was used. The viability of cells and efficiency of the colonization of samples were evaluated after 48 h using culture staining and colorimetric XTT.

RESULTS: Intravital monitoring of stromal cells, extracted from a biopsy of the mucosal lining of the alveolar process in the lower jaw, revealed sustained direct interaction between the cells and the samples, with no signs of necrosis or apoptosis. When staining samples with fixed cells, no red glow of the nuclei of dead cells was detected. The distribution of living cells was uniform in group 4 and less uniform in group 1. The optical density of the medium in each well was significantly different between the groups (p <0.05).

CONCLUSION: The proposed hygienic compositions for the care of facial prostheses using sprays and foams do not have toxic properties and can be implemented in clinical practice.

Full Text

Restricted Access

About the authors

Alexandr G. Stepanov

Peoples’ Friendship University of Russia

Author for correspondence.
Email: stepanovmd@list.ru
ORCID iD: 0000-0002-6543-0998
SPIN-code: 5848-6077
Scopus Author ID: 57192159404

MD, Dr. Sci. (Med.), Professor, Head of the Department

Russian Federation, 6 Miklukho-Maklaya street, 117198 Moscow

Samvel V. Apresyan

Peoples’ Friendship University of Russia

Email: dr.apresyan@mail.ru
ORCID iD: 0000-0002-3281-707X
SPIN-code: 6317-9002
Scopus Author ID: 56708885100

MD, Dr. Sci. (Med.), Professor

Russian Federation, 6 Miklukho-Maklaya street, 117198 Moscow

Alexander I. Igumnov

Maxim Kopylov MaxTreat Periodontological Center

Email: Dr_igumnov@mail.ru
ORCID iD: 0009-0002-7092-6848
Russian Federation, Moscow

Irina V. Velmakina

Privolzhsky Research Medical University

Email: velmakinairina@rambler.ru
ORCID iD: 0000-0002-0198-9928
SPIN-code: 2996-5982

MD, Cand. Sci. (Med.), Assistant Professor

Russian Federation, Nizhny Novgorod

References

  1. Urgunaliev BK, Tsoi AR, Kuramaeva UK. Traumatology of the maxillofacial region: current condition of the problems (literature review). Rossiiskaya stomatologiya. 2019;12(1):23–27. doi: 10.17116/rosstomat20191201123
  2. Krokhmal SV, Karpov AS, Raevskaya AI, et al. Factors leading to the occurrence of maxillofacial injury and its complications. Modern Problems of Science and Education. 2020;(5):146. doi: 10.17513/spno.30194
  3. Mikhalchenko DV, Zhidovinov AV. Retrospective analysis of statistical data of malignant tumors of maxillofacial localization. Modern Problems of Science and Education. 2016;(6):151.
  4. Bolotin MV, Mudunov AM, Sobolevsky VYu, Sokorutov VI. Algorithm of reconstruction combined midface defects after resection malignant tumors. Head and Neck Tumors. 2022;12(2):41–54. doi: 10.17650/2222-1468-2022-12-2-41-54
  5. Mikhailyukov VM. Modern aspects of surgical treatment of patients with posttraumatic defects and deformities of the middle zone of the face. Stomatology. 2015;94(6):71. (In Russ).
  6. Nazaryan DN, Kharazyan AE, Karayan AS, Chausheva SI, Yarantzev SV. Anaplastology as the part of plastic and maxillo-facial surgery. Head and Neck. 2014;(4):28–34.
  7. Arutyunov SD, Leontiev VK, Tsimbalistov AV, et al. Occupational risks in the rehabilitation of patients with acquired defects of the face and jaw (review of literature). Challenges in Modern Medicine. 2020;43(2):285–303. doi: 10.18413/2687-0940-2020-43-2-285-303
  8. Gastaldi G, Palumbo L, Moreschi C, Gherlone EF, Capparé P. Prosthetic management of patients with oro-maxillo-facial defects: a long-term follow-up retrospective study. Oral Implantol (Rome). 2017;10(3):276–282. doi: 10.11138/orl/2017.10.3.276
  9. Dings JPJ, Merkx MAW, De Clonie Maclennan-Naphausen MTP, et al. Maxillofacial prosthetic rehabilitation: A survey on the quality of life. J Prosthet Dent. 2018;120(5):780–786. doi: 10.1016/j.prosdent.2018.03.032
  10. Pustovaya IV, Engibaryan MA, Svetitskiy PV, et al. Orthopedic treatment in cancer patients with maxillofacial pathology. South Russian Journal of Cancer. 2021;2(2):22–33. doi: 10.37748/2686-9039-2021-2-2-3
  11. Klimczak J, Helman S, Kadakia S, et al. Prosthetics in facial reconstruction. Craniomaxillofac Trauma Reconstr. 2018;11(1):6–14. doi: 10.1055/s-0037-1603459
  12. Antonova IN, Kalakutsky NV, Veselova KA, Kalakutsky IN, Gromova NV. Craniofacial prostheses as a contemporary method of rehabilitation of patients with craniofacial defects. The Dental Institute. 2018;(1):98–100.
  13. Guyter OS, Mitin NE, Oleynikov AA, Manichkina AR, Serdtseva MS. Research of chewing efficiency in patients with extensive acquired defects of the upper jaw after resections of nasopharyngeal zone tumors and various terms of orthopedic rehabilitation. Stomatology. 2019;98(4):80–83. doi: 10.17116/stomat20199804180
  14. Kadyrov MCh, Vorisov AA, Kadyrov MM, Salnykov AN, Kadyrova SM. Orthopedic rehabilitation of patients with complex defects of the middle zone of the face. Challenges in Modern Medicine. 2022;45(3):291–301. doi: 10.52575/2687-0940-2022-45-3-291-301
  15. Farook TH, Jamayet NB, Abdullah JY, Rajion ZA, Alam MK. A systematic review of the computerized tools and digital techniques applied to fabricate nasal, auricular, orbital and ocular prostheses for facial defect rehabilitation. J Stomatol Oral Maxillofac Surg. 2020;121(3):268–277. doi: 10.1016/j.jormas.2019.10.003
  16. Unkovskiy A, Spintzyk S, Brom J, Huettig F, Keutel C. Direct 3D printing of silicone facial prostheses: A preliminary experience in digital workflow. J Prosthet Dent. 2018;120(2):303–308. doi: 10.1016/j.prosdent.2017.11.007
  17. Arutyunov SD, Polyakov DI, Muslov SA, et al. Study of the quality of life of patients using the QL PAER specific questionnaire after prosthetic auricular reconstruction. Clinical Dentistry. 2021;(1):160–164. doi: 10.37988/1811-153X_2021_1_160
  18. Arutyunov S, Polyakov D, Stepanov A, Muslov S. Digital study of the quality of life of patients with temporary epithesis of the ear canal during the period of osseointegration of cranial implants. Sovremennaya stomatologiya. 2020;(4):76–82.
  19. De Oliveira FM, Salazar-Gamarra R, Öhman D, et al. Quality of life assessment of patients utilizing orbital implant-supported prostheses. Clin Implant Dent Relat Res. 2018;20(4):438–443. doi: 10.1111/cid.12602
  20. Antonova IN, Kalakutskii NV, Veselova KA, Kalakutskii IN, Gromova NV. Properties of materials for craniofacial prostheses. The Dental Institute. 2019;(1):94–97.
  21. Polyakov DI, Muslov SA, Stepanov AG, Arutyunov SD. Mechanical properties of ear tissues and biocompatible silicones for auricular prosthetics. In: Physico-chemical biology: Proceedings of the VIII International Scientific Internet Conference; 2020 Nov 30; Stavropol. Stavropol; 2020. P:135–141. (In Russ).
  22. Shmurak MI, Kuchumov AG, Voronova NO. Hyperelastic models analysis for description of soft human tissues behavior. Master’s Journal. 2017;(1):230–243.
  23. Jindal SK, Sherriff M, Waters MG, Coward TJ. Development of a 3D printable maxillofacial silicone: Part I. Optimization of polydimethylsiloxane chains and cross-linker concentration. J Prosthet Dent. 2016;116(4):617–622. doi: 10.1016/j.prosdent.2016.02.020
  24. Fomina KA, Polushkina NA, Chirkova NV, Kartavtseva NG, Vecherkina ZhV. Preventive measures hygienic care of removable dentures of thermoplastic polymers (literature report). Journal of New Medical Technologies. 2017;24(3):211–216. doi: 10.12737/article_59c4ae8cb46860.22941232
  25. Donchenko AS. The care of orthopedic structures. Nauchnoe obozrenie. Meditsinskie nauki. 2017;(4):12–15.
  26. Factor II, Incorporated [Internet]. Available from: http://www.factor2.com
  27. Arutyunov SD, Ippolitov EV, Pivovarov AA, Carev VN. Effect of milling on the surface roughness and topography basic dental polymethylmethacrylate polymer and microbial adhesion. Sistemnyi analiz i upravlenie v biomeditsinskikh sistemakh. 2014;13(2):339–346.
  28. Ippolitov EV, Tsarev VN, Avtandilov GA, Tsareva EV, Didenko LV. Microbial biofilms on the surface of dental polymeric materials as the main factor of microbial persistence in dental and periodontal pathology. Rossiiskaya stomatologiya. 2016;9(1):92–93. (In Russ).
  29. Polyakov DI, Tsarev VN, Ippolitov EV, et al. Clinical and microbiological aspects of the auricle prosthetic reconstruction. Parodontologiya. 2021;26(4):327–333. doi: 10.33925/1683-3759-2021-26-4-327-333

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The appearance of the tested samples: from left to right numbers 1, 2, 3, 4. Macrophotography.

Download (21KB)
3. Fig. 2. Primary cell culture of stromal cells isolated from a biopsy of the mucous membrane of the alveolar process of the lower jaw of a person, passage 2. Phase contrast microscopy, ×50.

Download (83KB)
4. Fig. 3. Layering of the cell suspension on the test samples. Macrophotography.

Download (35KB)
5. Fig. 4. Formation of the colored reaction product during the XTT test: a — immediately after the introduction of the medium with XTT; b — 4 hours after the introduction of the medium with XTT. In the row “K” there are control wells (medium with XTT, but without cells). Macrophotography.

Download (598KB)
6. Fig. 5. Areas of direct contact of the tested samples 1–4 (a–d). Phase contrast microscopy, ×50.

Download (781KB)
7. Fig. 6. Live (calcein-AM stained, green glow) and dead (propidium iodide stained, red glow) cells on the surface of the tested samples 1–4 (a–d). Fluorescence microscopy, panoramic images. A 1 mm scale marker.

Download (530KB)
8. Fig. 7. XTT test results, primary data. Columns — samples 1–4; rows top to bottom — measurements 1–5, control.

Download (267KB)
9. Fig. 8. The results of the XTT test. The data is presented in the form of min [Me] max with all points indicated on the graph. *p <0.05.

Download (68KB)

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86295 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80635 от 15.03.2021 г
.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies