Determining articulation parameters using the Avantis 3D software, considering the individual hinge axis position

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Axiography (condylography) is used to assess the temporomandibular joints (TMJ) function and obtain individual articulator settings. Creating a virtual patient with TMJ dysfunction and determining its individual articulation parameters considerably simplify the procedure and accelerate the diagnosis for further rehabilitation.

AIM: To assess the potential of a virtual articulation system using the Avantis 3D software for determining angular parameters of mandibular movement, considering the individual hinge axis position.

MATERIALS AND METHODS: The clinical phase of the study included 25 volunteers aged 18–30 years, without complaints of TMJ dysfunction, previous orthodontic treatment, and malocclusion.

All volunteers underwent electronic condylography (axiography) using the CADIAX Diagnostic device; the movement of mandible heads during protrusion and mediotrusion was analyzed. The individual values of sagittal condylar inclination (SCI) and Bennett angle on the left and right were obtained. The individual hinge axis was determined, and special radiopaque markers were placed on the skin in the projection of its rotation. Additional markers were placed on the lower edge of the left orbital cavity.

Using these markers, cone beam computed tomography (CBCT) was performed in all volunteers, with a 17.5×20.0 matrix size, to create a 3D project, compare CBCT findings with virtual dental models, and generate a reference plane.

Virtual occlusion measurements were obtained in terminal positions (protrusion and laterotrusion) using the Trios 3 Basic Pod intraoral scanner. The Avantis 3D software was then used to create 3D scenes based on the obtained measurements and CBCT of the skull. The mean length of each path registered for virtual articulator settings in the Avantis 3D software was approximately 3 mm. The interarticular distance used for the analysis was recalculated using the Avantis 3D software to be equal to the standard intercondylar distance of the articulator, which is 110 mm. Individual SCI and Bennett angle values were obtained for all study subjects.

The experimental phase involved phantom models installed in a fully adjustable articulator Reference SL. CBCT was performed with an installed articulator and a maxillary cast, in a zero position, with closed center locks, which was matched to the maxilla present in the CT scan, and a 3D scene was created to measure SCI and Bennett angle values. After detecting the articulator’s hinge axis, electronic measurements of movement were taken, with a predefined SCI of 20–60° (increment 5°) and Bennett angle increments of 6, 12, and 20°. The results were assessed for a path of 3 mm.

RESULTS: The mean difference between the compared determination methods of angular parameters obtained during the experimental phase of the study was 3.20±7.22° for the left SCI; 2.09±9.75° for the right SCI; 5.50±11.26° for the left Bennett angle, and 6.40±6.29° for the right Bennett angle.

The mean difference between the compared determination methods of angular parameters obtained during the clinical phase of the study was 11.80±6.86° for the left SCI; 12.10±6.08° for the right SCI; 13.0±9.89° for the left Bennett angle, and 10.70±11.48° for the right Bennett angle.

CONCLUSION: Both approaches for determining angular parameters can be recommended for use in real-world dental practice. When sophisticated, expensive equipment is not available, a virtual articulation system in the Avantis 3D software can be used as a more simple and affordable technique of measuring angular parameters.

Full Text

Restricted Access

About the authors

Dmitry S. Kovgan

Peoples' Friendship University of Russia named after Patrice Lumumba

Email: megaspayn@mail.ru
ORCID iD: 0009-0000-2390-0413
SPIN-code: 3243-8270
Russian Federation, Moscow

Vladislav A. Erokhin

Samara State Medical University

Author for correspondence.
Email: vladalex.171097@mail.ru
ORCID iD: 0000-0003-1096-7568
SPIN-code: 4724-5883

MD

Russian Federation, 89 Chapaevskaja street, 443099 Samara

Dmitry A. Trunin

Samara State Medical University

Email: trunin-027933@yandex.ru
ORCID iD: 0000-0002-7221-7976
SPIN-code: 5951-4659

MD, Dr. Sci. (Medicine), Professor

Russian Federation, 89 Chapaevskaja street, 443099 Samara

Pavel M. Antonik

Russian University of Medicine

Email: wow-oop@yandex.ru
ORCID iD: 0000-0001-5262-6679
SPIN-code: 7892-3432
Russian Federation, Moscow

Michail M. Antonik

Russian University of Medicine

Email: wow-oop@yandex.ru
ORCID iD: 0000-0001-7902-1215
SPIN-code: 8713-4695

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Vitaly A. Parunov

Peoples' Friendship University of Russia named after Patrice Lumumba

Email: vparunov@mail.ru
ORCID iD: 0000-0003-2885-3657
SPIN-code: 8797-6513

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

AAleksandr N. Ryakhovsky

Central Research Institute of Dentistry and Maxillofacial Surgery

Email: avantis2006@mail.ru
ORCID iD: 0000-0002-0308-126X
SPIN-code: 5774-4493

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

References

  1. Utyuzh AS, Zekij AO, Lushkov RM, et al. Restoring the integrity of the dentoalveolar apparatus in the absence of a fixed interalveolar height using the immediate implant loading technique. The Dental Institute. 2021;(1):65–67. EDN: VEMCZS
  2. Dubova LV, Prisyazhnyh SS, Romankova NV, Malahov DV. Analysis of functional methods for determining the optimal position of the mandible. Parodontologiya. 2020;25(1):22–25. EDN: GFYMVU doi: 10.33925/1683-3759-2020-25-1-22-25
  3. Zhang XX, Liu JZ, Zou W, Wang M. Diagnostic testing using pterygomaxillary notches and retromolar pads on casts to check horizontal jaw relation. Chin J Dent Res. 2021;24(1):61–66. doi: 10.3290/j.cjdr.b1105885
  4. Kattadiyil MT, Alzaid AA, Campbell SD. What materials and reproducible techniques may be used in recording centric relation? Best evidence consensus statement. J Prosthodont. 2021;30(S1):34–42. doi: 10.1111/jopr.13321
  5. Postnikov MA, Nesterov AM, Trunin DA, et al. Possibilities of diagnostics and complex treatment of patients with tmj disfunctions. Clinical Dentistry (Russia). 2020;(1):60–63. EDN: JNDLGX doi: 10.37988/1811-153X_2020_1_60
  6. Kordaß B, Behrendt C, Ruge S. Computerized occlusal analysis — innovative approaches for a practice-oriented procedure. Int J Comput Dent. 2020;23(4):363–375.
  7. Shagibalov RR, Lushkov RM, Utyuzh AS, Zekij AO. Restoring the integrity of the dentoalveolar apparatus in the absence of a fixed interalveolar height using the immediate implant loading technique. Stomatolog. Minsk. 2020;(4):24–29. EDN: XHYFDY doi: 10.32993/dentist.2020.4(39).10
  8. Mamedov AdA, Kharke VV, Morozova NS, et al. Diagnostic methods selection in patients with temporomandibular joint dysfunction. The Dental Institute. 2019;(2):74–77. EDN: HTVSSH
  9. Kolk A, Scheunemann LM, Grill F, et al. Prognostic factors for long-term results after condylar head fractures: A comparative study of non-surgical treatment versus open reduction and osteosynthesis. J Craniomaxillofac Surg. 2020;48(12):1138–1145. doi: 10.1016/j.jcms.2020.10.001
  10. Doroshenko SI, Fedorova AV, Irha SV, et al. Optimization prosthetic treatment of patients with defects in teeth and dentitions, completed by the secondary dento-jaw deformations. Vestnik stomatologii. 2019;32(2):38–42. EDN: VVFALM
  11. Carossa M, Cavagnetto D, Ceruti P, et al. Individual mandibular movement registration and reproduction using an optoeletronic jaw movement analyzer and a dedicated robot: a dental technique. BMC Oral Health. 2020;20(1):271. doi: 10.1186/s12903-020-01257-6
  12. Postnikov MA, Trunin DA, Gabdrafikov RR, et al. Diagnosis of tmj dysfunction and planning of complex dental treatment on a clinical example. The Dental Institute. 2018;(3):78–81. EDN: XZONOH
  13. Ohlendorf D, Fay V, Avaniadi I, et al. Association between constitution, axiography, analysis of dental casts, and postural control in women aged between 41 and 50 years. Clin Oral Investig. 2021;25(5):2595–2607. doi: 10.1007/s00784-020-03571-3
  14. Najdanova IS, Pisarevskij YuL, Shapovalov AG, Pisarevskij IYu. The potential of current technologies in diagnostics of temporomandibular joint dysfunction (literature review). Actual Problems in Dentistry. 2018;14(4):6–13. EDN: VRJMEL doi: 10.18481/2077-7566-2018-14-4-6-13
  15. Park JH, Lee K, Kim JC, et al. Evaluation of mandibular position for splint therapy using a virtual articulator. J Clin Orthod. 2020;54(8):466–472.
  16. Lee H, Burkhardt F, Fehmer V, Sailer I. Accuracy of vertical dimension augmentation using different digital methods compared to a clinical situation — a pilot study. Int J Prosthodont. 2020;33(4):380–385. doi: 10.11607/ijp.6402
  17. Das A, Muddugangadhar BC, Mawani DP, Mukhopadhyay A. Comparative evaluation of sagittal condylar guidance obtained from a clinical method and with cone beam computed tomography in dentate individuals. J Prosthet Dent. 2021;125(5):753–757. doi: 10.1016/j.prosdent.2020.02.033
  18. Parreiras Ferreira R, Isaias Seraidarian P, Santos Silveira G, et al. How a discrepancy between centric relation and maximum intercuspation alters cephalometric and condylar measurements. Compend Contin Educ Dent. 2020;41(4):e1–e6.
  19. Cassi D, De Biase C, Tonni I, et al. Natural position of the head: review of two-dimensional and three-dimensional methods of recording. Br J Oral Maxillofac Surg. 2016;54(3):233–240. doi: 10.1016/j.bjoms.2016.01.025
  20. Lundström F, Lundström A. Natural head position as a basis for cephalometric analysis. Am J Orthod Dentofacial Orthop. 1992;101(3):244–247. doi: 10.1016/0889-5406(92)70093-P
  21. Christensen C. The problem of the bite. Dent Cosmos. 1905;47:1184–1195.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Optical registrations of terminal positions of the lower jaw: a — protrusion; b — laterotrusion to the right; c — laterotrusion to the left.

Download (223KB)
3. Fig. 2. Phantom models mounted in a fully adjustable Reference SL articulator.

Download (138KB)
4. Fig. 3. Cone-beam computed tomography of the Reference SL articulator with the upper jaw model installed.

Download (112KB)
5. Fig. 4. Created 3D scene in the Avantis 3D software for measurements.

Download (124KB)
6. Fig. 5. Measurement of the condylar path angle set by the articulator scale.

Download (512KB)
7. Fig. 6. Reference SL articulator with installed CADIAX Diagnostic sensors.

Download (304KB)
8. Fig. 7. Electronic recordings of movements with set angles.

Download (95KB)
9. Fig. 8. Measurement of angular values in the Avantis 3D software.

Download (247KB)
10. Fig. 9. Obtained results: a — of the sagittal condylar path angle on the right, b — of the sagittal condylar path angle on the left, c — of the Bennett angle on the right, d — of the Bennett angle on the left.

Download (255KB)
11. Fig. 10. Obtained data in Avantis 3D и CADIAX Diagnostic programs: a — of sagittal condylar path angles on the right, b — of sagittal condylar path angles on the left, c — Bennett angles on the left, d — Bennett angles on the right.

Download (273KB)
12. Fig. 11. Difference of mean values and standard deviation (M±m), Avantis 3D–CADIAX Diagnostic (degrees). ССП — sagittal condylar path.

Download (137KB)

Copyright (c) 2024 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86295 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80635 от 15.03.2021 г
.