Assessing the state of the alveolar morphotype when planning and carrying out orthodontic treatment for patients with inflammatory periodontal disease

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGRAUND: Negative functional and anatomical disorders of the periodontal complex tissues occur in 30–55% of cases against a background of orthodontic tooth movement. New diagnostic capabilities are needed to monitor the state of periodontal tissues during orthodontic tooth movement when using removable and non-removable types of orthodontic equipment to prevent the pathology of the supporting apparatus of the tooth.

AIM: To assess the state of periodontal tissues when planning and performing controlled orthodontic movement of crowns and roots of teeth using 3D computed tomography overlay in patients with inflammatory periodontal disease.

METHODS: The study included 80 patients aged 25–35 years, who were divided into a control group (with clinically healthy periodontium) and the main (with chronic generalized periodontitis) group for orthodontic treatment of dentoalveolar anomalies. The orthodontic equipment for the groups was identical (aligners, vestibular, and lingual braces with passive self-ligation). Before starting the orthodontic program, the alveolar morphotype was determined by a patient CT superimposed on a digital modeling program of the future result; the optical density of the alveolar bone was estimated in Hounsfield units. Clinical indicators to assess the condition of the periodontal tissues and the level of tissue recession were determined before treatment, after active periodontal treatment, including resection surgery, and after completion of the orthodontic program.

RESULTS: After the completion of orthodontic treatment, patients in group 1 had fewer periodontal complications (42% in group 1 vs. 54% in group 2), with an initially normal periodontium and a thin alveolar morphotype; 18% and 23%, with a thick alveolar morphotype. The best results were noted in the aligner subgroup (group 1, 16% vs. group 2; the worst were observed in the subgroup with lingually fixed braces at 50% and 55%, respectively). The most common periodontal complication was tissue recession. A positive orthodontic result was obtained after assessing the patient's computed tomography scans superimposed on the digital modeling program of the final result after the teeth were displaced.

CONCLUSIONS: The ability to control the state of the alveolar ridge bone using 3D visualization of tooth movement with a CT overlay increased the efficiency of orthodontic treatment planning by 40%, ensuring minimal side effects and complications.

Full Text

Restricted Access

About the authors

Yevgeniya S. Ovcharenko

Kuban State Medical University

Author for correspondence.
Email: ovcharenkoes@mail.ru
ORCID iD: 0000-0002-0132-2517
SPIN-code: 6874-5734
Scopus Author ID: 57204953044
ResearcherId: GQR-0516-2022

MD, Cand. Sci. (Med.), Associate Professor

Russian Federation, Krasnodar

Natalia V. Lapina

Kuban State Medical University

Email: kgma74@yandex.ru
ORCID iD: 0000-0001-8083-060X
SPIN-code: 8060-4683
Scopus Author ID: 57140233900
ResearcherId: R-6569-2017

MD, Dr. Sci. (Med.), Professor

Russian Federation, Krasnodar

Nikolay A. Bondarenko

Kuban State Medical University

Email: nick_bond@mail.ru
ORCID iD: 0000-0001-8207-7009

MD, Cand. Sci. (Med.), Associate Professor

Russian Federation, Krasnodar

Elena L. Vinichenko

Kuban State Medical University

Email: elvinichenko@mail.ru
ORCID iD: 0000-0003-1838-0737
SPIN-code: 4606-0939
ResearcherId: HKN-6910-2023

MD, Cand. Sci. (Med.), Associate Professor

Russian Federation, Krasnodar

Sergey A. Karapetov

Kuban State Medical University

Email: karapetov.sergei@gmail.com
ORCID iD: 0000-0003-4281-1330
SPIN-code: 7141-6009

Assistant

Russian Federation, Krasnodar

Larisa M. Maryanenko

Kuban State Medical University

Email: lmmarianenko@gmail.com
ORCID iD: 0000-0001-8341-0352
SPIN-code: 6597-5852

Assistant

Russian Federation, Krasnodar

Georgiy E. Grigoryan

Kuban State Medical University

Email: grigoryan-g2022@mail.ru
ORCID iD: 0000-0002-4726-0091

3rd year student of the faculty of dentistry

Russian Federation, Krasnodar

References

  1. Arsenina OI, Grudynov AI, Nadtochiy AG, et al. Ortodontic treatmet of a patient with a thin gingival biotype and malocclusion. Stomatology. 2020;99(1):89–94. (In Russ). doi: 10.17116/stomat20209901189
  2. Karefova ZV, Tkhazaplizcheva MT, Shkhagapsoeva KA, et al. Influence of ortodontic treatment on the state of periodontal tissues. Clin Med. 2021;(8):174–179. (In Russ). doi: 10.37882/2223-2966.2021.08.13
  3. Sharma K, Mangat S, Kichorchandra MS, et al. Correlation of orthodontic treatment by fixed or myofunctional appliances and periodontitis: a retrospective study. J Contemp Dent Pract. 2017;18(4):322–325. doi: 10.5005/jp-journals-10024-2039
  4. Matsumura T, Ishida Y, Kawabe A, Ono T. Quantitative analysis of the relationship between maxillary incisors and the incisive canal by cone-beam computed tomography in an adult Japanese population. Prog Orthod. 2017;18(1):24. doi: 10.1186/s40510-017-0181-1
  5. Drogomiretskaya MS. The choice of the optimal scheme of therapeutic and diagnostic measures for periodontal pathology in the process of orthodontic treatment. Dentistry Bulletin. 2010;(1):55–58. (In Russ).
  6. Zhigulina VV, Rumyantsev VA. Matrix metalloproteinases in periodontitis. Bulletin Tver State University. Series "Chemistry". 2016;(3):134–144. (In Russ).
  7. Orekhova LY, Kosova EV, Petrov AA, Kosov SA. Change of microcirculation of periodontal tissues in young people under the influence of smoking. Periodontal. 2018;23(1):15–19. (In Russ). doi: 10.25636/P.M.P.1.2018.1.3
  8. Morris JW, Campbell PM, Tadlock LP, et al. Prevalence of gingival recession after orthodontic tooth movements. Am J Orthod Dentofacial Orthop. 2017;151(5):851–859. doi: 10.1016/j.ajodo.2016.09.027
  9. Renkema AM, Fudalej PS, Renkema AA, et al. Gingival labial recessions in orthodontically treated and untreated individuals: A case--control study. J Clin Periodontol. 2013;40(6):631–637. doi: 10.1111/jcpe.12105
  10. Ke Y, Zhu Y, Zhu M. A comparison of treatment effectiveness between clear aligner and fixed appliance therapies. BMC Oral Health. 2019;19(1):24. doi: 10.1186/s12903-018-0695-z
  11. Liu Y, Hu W. Force changes associated with different intrusion strategies for deep-bite correction by clear aligners. Angle Orthod. 2018;88(6):771–778. doi: 10.2319/12717-864.1
  12. Ma Y, Li S. The optimal ortodontic displactment of clear aligner for mild, moderate and severe periodontal conditions: An in vitro study in a periodontally compromised indnvidual using the finite element model. BMC Oral Health. 2021;21(1):104. doi: 10.1186/s2903-021-01474-7
  13. Gebistorf M, Mijuskovic M, Pandis N, et al. Gingival recession in orthodontic patients 10 to 15 years posttreatment: A retrospective cohort study. Am J Orthod Dentofacial Orthop. 2018;153(5):645–55. doi: 10.1016/j.ajodo.2017.08.020
  14. Seo JH, Eghan-Acquah E, Kim MS, et al. Comparative analysis of stress in the periodontal ligament and center of rotation in the tooth after orthodontic treatment depending on clear aligner thickness-finite element analysis study. Materials (Basel). 2021;14(2):324. doi: 10.3390/ma14174926
  15. Garib DG, Yatabe MS, Ozawa TO, Silva OG. Filho Alveolar bone morphology under the perspective of the computed tomography: defining the biological limits of tooth movement. Dental Press J Orthod. 2010;15(5):192–205. doi: 10.1590/S2176-94512010000500023
  16. Parkhamovich SN, Shablinskaya OE. Possibilities of modern methods radiological research in an assessment of bone tissue process alveolar. Modern Dentistry. 2021;(2):93–96. (In. Russ.)
  17. Ovcharenko ES, Samokhvalova ID, Perova MD, et al. Possibilities of control of the state o parodontal tissues when planning and performing orthodontic movement of teeth. Periodontal. 2022;(2):171–182. (In Russ.) doi: 10.33925/1683-3759-2022-27-2-171-182
  18. Fu JH, Yeh CY, Chan HL, et al. Tissue biotype and its relation to the underlying bone morphology. J. Periodontol. 2010;81(4):569–574. doi: 10.1902/jop.2009.090591
  19. Zheng M, Liu R, Ni Z, Yu Z. Efficiency, effectiveness and treatment stability of clear aligners: a systematic review and meta-analysis. Orthodontics Craniofacial Res. 2017;20(3):127–133. doi: 10.1111/ocr.12177
  20. Seo JH, Eghan-Acquah E, Kim MS, et al. Comparative analysis of stress in the periodontal ligament and center of rotation in the tooth after orthodontic treatment depending on clear aligner thickness-finite element analysis study. Materials (Basel). 2021;14(2):324. doi: 10.3390/ma14174926

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Randomised sequence chart. ВбПЛ — lingual braces of passive self-ligation; ЛбПЛ — lingual braces of passive self-ligation; ОДЛ — orthodontic treatment; ХГПССТ — chronic generalized periodontitis of moderate severity.

Download (292KB)
3. Fig. 2. Computer modeling of the plan of orthodontic movement of dentitions and roots of teeth before movement, front view.

Download (72KB)
4. Fig. 3. Computer modeling of the plan of orthodontic movement of dentitions and roots of teeth after movement, front view.

Download (84KB)
5. Fig. 4. Computer modeling of the plan of orthodontic movement of dentitions and roots of teeth before and after movement, left view.

Download (78KB)
6. Fig. 5. Computer modeling of the plan of orthodontic movement of dentitions and roots of teeth before and after movement left view.

Download (66KB)
7. Fig. 6. Computer modeling of the plan of orthodontic movement of dentitions and roots of teeth before and after movement right view.

Download (67KB)
8. Fig. 7. Computer modeling of the plan of orthodontic movement of dentitions and roots of teeth before and after movement right view.

Download (71KB)
9. Fig. 8. Festoon McCola in area 13.

Download (94KB)
10. Fig. 9. Festoon McCola in area 23.

Download (81KB)
11. Fig. 10. Gingival recession 44, 45.

Download (120KB)
12. Fig. 11. Patient N. Diastema. Trema in the area of the frontal and chewing teeth. Distal occlusion. Deep sagittal incisal deocclusion, right view.

Download (94KB)
13. Fig. 12. Patient N. Diastema. Trema in the area of the frontal and chewing teeth. Distal occlusion. Deep sagittal incisal deocclusion, left view.

Download (90KB)
14. Fig. 13. Patient N. Diastema. Trema in the area of the frontal and chewing teeth. Distal occlusion. Deep sagittal incisal deocclusion, front view.

Download (92KB)
15. Fig. 14. 3D imaging with CBCT overlay prior to tooth movement, front view.

Download (175KB)
16. Fig. 15. 3D imaging with CBCT overlay prior to tooth movement, front view.

Download (170KB)
17. Fig. 16. 3D imaging with CBCT overlay prior to tooth movement, right view.

Download (158KB)
18. Fig. 17. 3D imaging with CBCT overlay prior to tooth movement, right view.

Download (153KB)
19. Fig. 18. 3D imaging with CBCT overlay prior to tooth movement, left view.

Download (169KB)
20. Fig. 19. 3D imaging with CBCT overlay prior to tooth movement, left view.

Download (179KB)

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86295 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80635 от 15.03.2021 г
.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies