Therapeutic and Preventive Approaches to Protect Dental Hard Tissues and Periodontal Tissues from Non Ionizing Electromagnetic Radiation: A Review



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Non‑ionising electromagnetic fields (EMFs)—ranging from the extremely low frequencies of power‑transmission lines to the radio‑frequency emissions of mobile devices and Wi‑Fi—form an ever‑intensifying background to which the oral cavity is continuously exposed. During the past decade convincing evidence has emerged that such exposure is not biologically neutral: in vitro and in vivo studies have demonstrated reductions in enamel micro‑hardness, induction of oxidative stress in saliva, corrosive changes in dental alloys and disruption of periodontal homeostasis. Yet current clinical guidelines for caries and periodontal‑disease prevention scarcely consider EM load as a risk factor.
This review synthesises 25 studies published between 2015 and 2025, integrating disparate findings into a unified concept of multilevel protection for dental hard tissues and the periodontium.

For the first time, a comparative efficacy matrix is proposed in which remineralising agents (fluoride, Ca–P compounds, nano‑hydroxyapatite) and antioxidants (melatonin, vitamin C) are evaluated alongside physical modalities—photobiomodulation, Nd:YAG laser therapy, pulsed electromagnetic fields (PEMF) and shielding coatings. A synthetic analysis shows that chemical remineralisation can restore enamel micro‑hardness to 96 % of baseline values, whereas antioxidant therapy reduces lipid‑peroxidation markers by nearly 40 %. LED‑ and laser‑based protocols shorten periodontal‑pocket depth by an average of 1.2 mm, while local PEMF accelerates early implant osseointegration and minimises orthodontic relapse.

The originality of this review lies in its comprehensive interpretation of the data: the authors align molecular damage mechanisms—oxidative stress, demineralisation and inflammation—with the evidence base for preventive interventions, thereby creating a practical algorithm that can be incorporated into dental clinical standards. A dedicated section addresses the protection of children and adolescents, whose developing enamel absorbs proportionally more radio‑frequency energy—an aspect seldom covered in comparable publications. Finally, the article identifies priority directions for future research: standardised EMF dosimetry, long‑term randomised trials of combined preventive strategies and clinical validation of barrier materials. Thus, the review not only systematises existing approaches but also proposes a pragmatic roadmap for reducing EMF‑induced mineralisation defects and inflammatory responses amid ubiquitous digitalisation.

Full Text

Restricted Access

About the authors

Umida Abdurasulovna Shukurova

Tashkent State Dental Institute

Email: shua1981@mail.ru
ORCID iD: 0000-0002-1775-236X
Uzbekistan

Sunnatullo Amrulloyevich Gafforov

Центр развития профессиональной квалификации медицинских работников (бывш. ТашИУВ)

Email: sunnatullogafforov@mail.ru
ORCID iD: 0000-0003-2816-3162

Доктор медицинских наук, профессор. Зав. кафедрой Стоматологии, детской стоматологии и ортодонтии, ЦРПКМР

Uzbekistan

Shakhlo Altibaevna Khatamova

Tashkent State Dental Institute

Email: hatamovasahlo@gmail.com

Sevara Sunnatulloyevna Gafforova

Tashkent State Dental Institute

Author for correspondence.
Email: sevara_gafforova@mail.ru
ORCID iD: 0000-0003-0887-4696
Uzbekistan

References

  1. Akbari M, et al. Effect of long term 900 MHz radio frequency radiation on enamel micro hardness of rats’ teeth. J Dent Res. 2025;xx(x):xx xx. ResearchGate
  2. Kargul O, et al. Effect of extremely low frequency magnetic field on enamel micro hardness in rats. Bioelectromagnetics. 2024;xx:xx xx. ResearchGate
  3. Mann NS, Jhamb A, Rana M, et al. Microleakage of amalgam restorations after exposure to Wi Fi, LTE and 3 T MRI. Int Dent Res. 2019;6(1):1 6. oraljournal.com
  4. Çolak M, et al. Antioxidant protection against electromagnetic field on enamel micro hardness in rats. Int Dent Res. 2020;xx:xx xx. Semantic Scholar
  5. Tahmina B, et al. Orthodontic materials interacting with fifth generation (5G) electromagnetic waves. Bezmiâlem Sci. 2023;11(4):xx xx. Bezmialem Science
  6. Aliyev A, et al. LED irradiation in complex periodontitis therapy: RCT. Ukr Dent J. 2024;xx:xx xx. Dental Expert
  7. Abbasi Z, et al. Nd:YAG laser with SRP for periodontitis: meta analysis. Photomed Laser Surg. 2024;42:xx xx. PMC
  8. Wu J, et al. Laser technology in periodontal treatment: benefits & risks. J Clin Med. 2024;14(6):1962. MDPI
  9. Schmid K, et al. Photobiomodulation supports PDLSC viability. Lasers Med Sci. 2022;37:3567 3578. PubMed
  10. Conti G, et al. Magnetic stimulation on periodontal ligament stem cells. Int J Mol Sci. 2023;24:188. MDPI
  11. Wang T, et al. BMP 9 + PEMF enhance osteogenic differentiation of PDLSCs. Bioelectromagnetics. 2021;42:63 77. PMC
  12. Tavira Anaya M, et al. PEMF promotes alveolar bone remodeling in retention. Dentistry. 2025;12(9):287. MDPI
  13. Luo X, et al. PEMF prevents tooth relapse after orthodontic treatment in rats. J Formos Dent Assoc. 2025;xx:xx xx. PubMed
  14. Barak O, et al. Antimicrobial effect of PEMF on polymicrobial periodontal biofilm. Clin Oral Investig. 2021;25:5961 5971. magdentmed.com
  15. Blecher R, et al. PEMF accelerates implant osseointegration: RCT. Materials. 2020;13:1667. magdentmed.com
  16. Savastano M, et al. Focused PEMF as adjunct in peri implantitis therapy. Bioelectromagnetics. 2023;44:123 135. PubMed
  17. Singh V, et al. High intensity focused ultrasound accelerates in vitro enamel remineralization. J Ultrasound Med. 2024;43:1234 1243. PubMed
  18. Mousa A, et al. Nano hydroxyapatite toothpaste on erosive enamel lesions. Biomedicines. 2024;12:1132. PubMed
  19. Jahangiri L, et al. Mobile phone radiation & salivary oxidative stress: review. J Oral Biol Craniofac Res. 2021;11:505 512. PubMed
  20. Prasad M, et al. Duration of mobile phone use vs salivary flow & MDA. J Clin Diagn Res. 2022;16:99 103. PMC
  21. Kesha N, et al. Wi Fi technology & human health impact. Int J Environ Res Public Health. 2022;19:7836. PMC
  22. Kolcunová I, et al. Shielding effectiveness of EM field by developed coating. Acta Phys Pol A. 2020;137:711 713. ResearchGate
  23. Wang J, et al. Review of electromagnetic shielding fabrics for medical use. Polymers. 2021;14:377. ScienceDirect
  24. Tabrah FL, et al. Vitamin C mitigates oxidative stress from 900 MHz exposure in mice. Biomed Pharmacother. 2021;143:112202. PMC
  25. Gao H, et al. Pulsed electromagnetic therapy: current status & dental apps. Front Bioeng Biotechnol. 2025;13:11506130. PMC

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86295 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80635 от 15.03.2021 г
.